, Volume 62, Issue 5–6, pp 511–520 | Cite as

Electroslag Remelting Technology for Contemporary Engineering. Retrospection and New Possibilities

  • V. S. DubEmail author
  • L. Ya. Levkov
  • D. A. Shurygin
  • D. S. Tolstykh
  • V. V. Klochai
  • E. L. Коrzun
  • A. A. Garchenko

New methods are developed for managing the physical chemistry and structural uniformity of electroslag remelted (ESR) ingots with the aim of improving consumer properties for the most critical power generation objects, including atomic and heavy engineering, substantiation and practical verification of the principles of managing physicochemical, and thermophysical processes, approval of monitoring and control methods, and development on this basis of new areas for using ESR during manufacture of solid, hollow, and shaped ingots. Results of the work make it possible to the evaluate the ESR process afresh as an economic effective contemporary method for manufacture of high quality objects.


cyclic electroslag remelting two-phase region slag oxygen capacity reduced frequency alternating current metal quality body and internal winding unit 


S. V. Orlov and Zh. K. Kashirina (AO NPO TsNIITMASh) participated in the work.

Work was carried out with financial support from the Russian Federation Ministry of Science and Technology within an agreement for supply of a subsidy for performing applied scientific research on the theme “Research and development of fundamentally new import-substitution technology for producing shut-off and control equipment made from nanostructured steel exhibiting a good reserve of corrosion resistance in a gas medium with a high H2S and CO2 content” (Unique identifier PNIÉR:RFMEF157915X0114).


  1. 1.
    M. Kubin, A. Scheriau, M. Knabl, and H. Holzgruber, “Production of heavy forging ingots up to 250 tons via the ESR process — operational experiences and process optimization method,” Рroc. 2nd Medovar Memorial Symposium (2016).Google Scholar
  2. 2.
    V. S. Dub, Yu. N. Kriger, L. Ya. Levkov, et al., “Electroslag remelting method for fundamental improvement of quality and properties of critical objects in contemporary engineering. Technical specifications and new solutions,” Tyazheloe Mashin., No. 6, 2–6 (2012).Google Scholar
  3. 3.
    B. I. Medovar, A. K. Tsikulenko, and A. M. Dyachenko, Electroslag Metal Quality [in Russian], B. E. Paton and B. I. Medovar, editors, Naukova Dumka, Kiev (1990).Google Scholar
  4. 4.
    V. S. Dub, “Problems of manufacturing technology for large high quality ingots for critical objects,” Proc. “Fundamental problems of Russian metallurgy at the threshold of the 21 st century,” RAEN, Moscow (1998).Google Scholar
  5. 5.
    Ya. M. Vasil’ev, L. Ya. Levkov, and V. I. Alipatov, “Special electrometallurgy in power generation and heavy engineering,” Élektrometallurgiya, No. 5, 31–39 (1999).Google Scholar
  6. 6.
    G. Fidler, Yu. Lambrekht, Ya. Xasil’ev, et al., “Study of the structure of large ingots of successive remelting in relation to melting rate. Special electrometallurgy,” Proc. Internat. Symp. Part 2, Naukova Dumka, Kiev (1972).Google Scholar
  7. 7.
    A. Kharicha, A. Ludwig, and M. Wu, “Shape and stability of the slag/melt interface in a small DC ESR process,” Mater. Sci. and Engin. A, 413–414, 129–134 (2005).CrossRefGoogle Scholar
  8. 8.
    V. B. Gutkin, Study of Features of Electroslag Remelting on Reduced Frequency Current with the Aim of Improving Process and Equipment, Diss. Cand. Techn. Sci., 05.09.10, Moscow (1982).Google Scholar
  9. 9.
    E. Karimi Sibaki, A. Kharicha, M. Wu, et al., “A numerical study on the influence of the frequency of the applied AC current on the electroslag remelting processes,” Proc. Int. Symp. Liquid Metal Processing and Casting (2013).Google Scholar
  10. 10.
    A. Kharicha, A. Ludwig, M. Wu, et al., “Integrated simulation of advanced protective gas electro-slag remelting for the production of high-quality steels (ISA-PESR),” Final Report, Contract No. RFSR-CT-2004–00027, 1 (2009).Google Scholar
  11. 11.
    V. S. Dub, L. Ya. Levkov, D. A. Shurygin, et al., “Experience of production of hollow tubular ingots by electroslag melting,” Russian Metallurgy (Metally), No. 6, 478–486 (2015).CrossRefGoogle Scholar
  12. 12.
    A. V. Dub, V. S. Dub, S. M. Nekhamin, L. Ya. Levkov, et al., RF Patent 2424325, МPК С21 С5/56, Method of electroslag melting of a hollow ingot, Claim 09.17.2009, Publ. 07.20.2011.Google Scholar
  13. 13.
    A. V. Dub, V. S. Dub, A. A. Polushin, et al., RF Patent 2445383 МPК С22 В9/187, Unit for electroslag melting of hollow ingots, Claim 06.21.2010, Publ. 03.20.2012.Google Scholar
  14. 14.
    L. Ya. Levkov, Ya. M. Vasil’ev, A. F. Pishkarev, and V. S. Dub, “Behavior of oxygen, aluminum, and silicon during electroslag remelting of steel,” Probl. Spets. Élektromet., No. 3, 9–15 (1986).Google Scholar
  15. 15.
    L. Ya. Levkov, Theoretical Prerequisites and Practical Methods for Controlling Physicochemical and Thermophysical Processes During Electroslag Remelting Determining Critical Object Quality, Diss. Doct. Techn. Sci., 05.16.02, Moscow (2016).Google Scholar
  16. 16.
    L. Ya. Levkov, S. V. Kamatsev, Yu. N. Kriger, et al., RF Patent 2448173, МPК С22 В9/187, Method of electroslag remelting and device for its accomplishment, Claim 09.24.2009, Publ. 04.30.2012.Google Scholar
  17. 17.
    A. V. Dub, V. S. Dub, A. A. Polushin, et al., RF Patent 2424336, МPК С22 В9/187, Electroslag furnace, Claim 09.30.2009, Publ. 07.20.2011.Google Scholar
  18. 18.
    A. V. Krasovskii, A. V. Dub, V. S. Dub, et al., RF Patent 2456355, МPК С22 В9/187, Device for electroslag melting of large hollow and solid ingots, Claim 07.06.2011, Publ. 07.20.2012.Google Scholar
  19. 19.
    D. A. Shutygin, Effect of Electroslag Remelting Technology on Quality and Properties of Objects of 9–12% Chromium Steel for Power Generation Equipment with Supercritical Steam Parameters, Diss. Cand. Techn. Sci, 05.16.02, Moscow (2016).Google Scholar
  20. 20.
    M. Okamura, K. Hirose, and M. Maeda, “The manufacturing of Gigantik high alloy ingot by ESR,” Proc. 11th Int. Forgemasters Meeting (1991, Terni/Spolto, Italy).Google Scholar
  21. 21.
    L. Ya. Levkov, “Oxidation-reduction modeling of electroslag remelting,” Int. Conf. Math. Modeling and Simulation of Metal Technologies — MMT (Israel. 2000).Google Scholar
  22. 22.
    K. N. Utkina, A. G. Balikoev, L. Ya. Levkov, et al., “Fundamental technology for producing new nano-structured corrosion-resistant duplex steel,” Proc. 19 th Conf. Young Specialists for Nuclear Power Generation Units, Podol’sk (2017).Google Scholar
  23. 23.
    A. V. Dub, L. Ya. Levkov, D. A. Shurygin, et al., “Prospects for producing equipment for atomic power stations using ESR,” Vopr. Atom. Nauk Tekhn. Mater. Tekhnol. Izgot. Oborud. RU, No. 34, 11–18 (2013).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • V. S. Dub
    • 1
    Email author
  • L. Ya. Levkov
    • 1
  • D. A. Shurygin
    • 1
  • D. S. Tolstykh
    • 1
  • V. V. Klochai
    • 2
  • E. L. Коrzun
    • 2
  • A. A. Garchenko
    • 2
  1. 1.GNTs AO NPO TsNIITMAShMoscowRussia
  2. 2.PAO RuspolimetKulebakiRussia

Personalised recommendations