Advertisement

Metallurgist

, 53:322 | Cite as

Theoretical and experimental foundations for preparing coke for blast-furnace smelting

  • A. L. Podkorytov
  • A. M. Kuznetsov
  • E. N. Dymchenko
  • V. P. Padalka
  • S. L. YaroshevskiiEmail author
  • A. V. Kuzin
Article

This article examines the preparation of coke for blast-furnace smelting by a method that most fully meets the requirements of blast-furnace technology: screening of the −36 mm fraction, the separation of nut coke of the 15–36 mm fraction, and its charging into the furnace in a mixture with the iron-ore-bearing charge components. An analysis is made of trial use of coke of the Premium class on blast furnace No. 5 at the Enakievo Metallurgical Plant. Use of this coke makes it possible to reduce the consumption of skip coke by 3.2–4.1%.

Key words

metallurgical coke skip coke nut coke fraction coke uniformity porosity 

References

  1. 1.
    N. A. Savchuk and I. F. Kurunov, “Blast-furnace smelting at the threshold of the 21st Century,” in: Innovations in Ferrous Metallurgy Abroad [in Russian], Chermetinformatsiya, Moscow (2000), p. 42.Google Scholar
  2. 2.
    K. N. Grosspietsch, N. V. Lungen, G. Danwels, et al., “Coke quality requirements by European blast furnace operators in the turn of the millenium,” Proc. 4th Europ. Coke and Ironmaking Conf., June 19–22, 2000, Paris La Defense, France. Vol. 1, pp. 184–191.Google Scholar
  3. 3.
    S. A. Yaroshevskii, N. S. Khlaponin, A. M, Kuznetsov, and A. V. Kuzin, Production and Use of Nut Coke in Blast-Furnace Smelting [in Russian], UNITEKh, Donetsk (2006).Google Scholar
  4. 4.
    G. S. Ukhmylova, “Problems in coke and coal chemicals production,” in: Innovations in Ferrous Metallurgy Abroad [in Russian], Chermetinformatsiya, Moscow (2002).Google Scholar
  5. 5.
    V. Leisenhut, K. Engel, W. Kraft, et al., “Experiments on the use of different fractions of coke in blast furnaces,” Chernye Metally, No. 2, 25–30 (1979).Google Scholar
  6. 6.
    O. F. Koryakova, V. V. Shchepanskii, A. B. Partsevskii, and L. S. Fedorova, “Improving the technology for blast-furnace smelting to alleviate the adverse effect of alkalis and zinc,” Byul. TsNIIchermeta, No. 15, 13–33 (1980).Google Scholar
  7. 7.
    A. A. Tomash, “Elaboration of theoretical principles behind the calculation of the porosity of granular materials,” Proc. V Int. Congr. of Blast-Furnace Operators “Production of Pig Iron in the New Millenium,” Krivoy Rog, June 7–12, 1999, Porogi, Dnepropetrovsk (1999), pp. 273–276.Google Scholar
  8. 8.
    V. A. Ulakhovich, K. K. Shkodin, A. P. Kotov, et al., “Optimum coarseness of coke for blast-furnace smelting,” Stal, No. 12, 34–38 (1982).Google Scholar
  9. 9.
    M. F. Kazanskii, V. M. Antipov, and I. D. Balon, “Experimental studies of the physico-mechanical properties of bulk quantities of pre-treated and standard coke,” Symp. DonNIIchermet “Metallurgy of Pig Iron,” Metallurgiya, Moscow (1969), Vol. 8, pp 25–33.Google Scholar
  10. 10.
    L. Z. Hodak, B. A. Gess-De-Kalve, Yu. I. Borisov, et al., “Screen composition of coke for blast-furnace smelting,” Koks i Khimiya, No. 7, 20–24 (1974).Google Scholar
  11. 11.
    “Experience with the operation of a powerful coke-oven battery: Proc. II Int. Cong. on Coke and Coal Chemicals Production,” ibid., No. 6, 18–23 (1993).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • A. L. Podkorytov
    • 1
  • A. M. Kuznetsov
    • 1
  • E. N. Dymchenko
    • 1
  • V. P. Padalka
    • 1
  • S. L. Yaroshevskii
    • 2
    Email author
  • A. V. Kuzin
    • 2
  1. 1.Enakievo Metallurgical PlantDonetsk RegionUkraine
  2. 2.Donetsk National Technical UniversityDonetskUkraine

Personalised recommendations