Advertisement

Meccanica

pp 1–19 | Cite as

Rain erosion of wind turbine blades: computational analysis of parameters controlling the surface degradation

  • Saeed Doagou-RadEmail author
  • Leon MishnaevskyJr.
Computational Models for 'Complex' Materials and Structures, beyond the Finite Elements
  • 44 Downloads

Abstract

Parameters influencing the erosion behavior of the leading edges of wind turbine blade tips are investigated. Recent enhancements in structural sizes of wind turbines operating at extreme environments present critical challenges to performance and sustainability of wind energy production. In order to investigate the influence of the parameters controlling the erosion performance of the coatings under rain contacts, a systematic finite element simulation approach was implemented. Three main groups of parameters namely environmental, design, and manufacturing were investigated. The conducted investigations reveal desirable coating material characteristics and a simple indicator to select materials which protect leading edges against rain erosion. Moreover, the parameters such as surface properties, manufacturing aspects, and droplet shape were demonstrated to be critical in estimation of the coatings lifetime through numerical simulations. The introduced results provide a roadmap toward improved design of durable coatings for new wind turbine blades.

Keywords

Wind energy Modelling Finite element Erosion Coating 

Notes

Acknowledgement

The authors kindly acknowledge the financial support of the Innovation Foundation of Denmark in the framework of the Grand Solutions project DURALEDGE, Durable leading edges for high tip speed wind turbine blades, File no.: 8055-00012A.

References

  1. 1.
    Mishnaevsky L (2019) Repair of wind turbine blades: review of methods and related computational mechanics problems. Renew Energy 140:828–839CrossRefGoogle Scholar
  2. 2.
    Gohardani O (2011) Impact of erosion testing aspects on current and future flight conditions. Prog Aerosp Sci 47:280–303.  https://doi.org/10.1016/j.paerosci.2011.04.001 CrossRefGoogle Scholar
  3. 3.
    Andersen KB (2018) Siemens makes billions: Ørsted must have repaired hundreds of mills. FinansGoogle Scholar
  4. 4.
    Sareen A, Sapre CA, Selig MS (2012) Effects of leading-edge protection tape on wind turbine blade performance. Wind Eng 36:525–534CrossRefGoogle Scholar
  5. 5.
    Gaudern N (2014) A practical study of the aerodynamic impact of wind turbine blade leading edge erosion. In: Journal of physics: conference series. IOP Publishing, p 12031Google Scholar
  6. 6.
    Wood K (2011) Blade repair: closing the maintenance gap. CW Composites World, 4/1/2011Google Scholar
  7. 7.
    Mishnaevsky L Jr, Branner K, Petersen HN, Beauson J, McGugan M, Sørensen B (2017) Materials for wind turbine blades: an overview. Materials 10(11):1285ADSCrossRefGoogle Scholar
  8. 8.
    Fraisse A, Bech JI, Borum KK et al (2018) Impact fatigue damage of coated glass fibre reinforced polymer laminate. Renew Energy 126:1102–1112CrossRefGoogle Scholar
  9. 9.
    Keegan MH, Nash DH, Stack MM (2013) On erosion issues associated with the leading edge of wind turbine blades. J Phys D Appl Phys 46:383001ADSCrossRefGoogle Scholar
  10. 10.
    Keegan MH, Nash D, Stack M (2012) Modelling rain drop impact on offshore wind turbine blades. ASME Turbo Expo 2012 Article-GTGoogle Scholar
  11. 11.
    Slot HM, Gelinck ERM, Rentrop C, Van Der Heide E (2015) Leading edge erosion of coated wind turbine blades: review of coating life models. Renew Energy 80:837–848CrossRefGoogle Scholar
  12. 12.
    Amirzadeh B, Louhghalam A, Raessi M, Tootkaboni M (2017) A computational framework for the analysis of rain-induced erosion in wind turbine blades, part I: stochastic rain texture model and drop impact simulations. J Wind Eng Ind Aerodyn 163:33–43CrossRefGoogle Scholar
  13. 13.
    Amirzadeh B, Louhghalam A, Raessi M, Tootkaboni M (2017) A computational framework for the analysis of rain-induced erosion in wind turbine blades, part II: drop impact-induced stresses and blade coating fatigue life. J Wind Eng Ind Aerodyn 163:44–54CrossRefGoogle Scholar
  14. 14.
    Mie G (1903) Zur kinetischen Theorie der einatomigen Körper. Ann Phys 316:657–697CrossRefGoogle Scholar
  15. 15.
    Grüneisen E (1912) Theorie des festen Zustandes einatomiger Elemente. Ann Phys 344:257–306CrossRefGoogle Scholar
  16. 16.
    Cook SS (1928) Erosion by water-hammer. Proc R Soc Lond Ser A Contain Pap Math Phys Charact 119:481–488ADSCrossRefGoogle Scholar
  17. 17.
    Dear JP, Field JE (1988) High-speed photography of surface geometry effects in liquid/solid impact. J Appl Phys 63:1015–1021.  https://doi.org/10.1063/1.340000 ADSCrossRefGoogle Scholar
  18. 18.
    Tobin EF, Young TM, Raps D (2012) Evaluation and correlation of inter-laboratory results from a rain erosion test campaign. In: Proceedings of 28th international congress of the aeronautical sciencesGoogle Scholar
  19. 19.
    Siddons C, Macleod C, Yang L, Stack M (2015) An experimental approach to analysing rain droplet impingement on wind turbine blade materials. EWEA 2015 annu eventGoogle Scholar
  20. 20.
    Busch H, Hoff G, Langbein G (1966) Rain erosion properties of materials. Philoso Trans R Soc Lond Ser A Math Phys Sci 260(1110):168–178ADSCrossRefGoogle Scholar
  21. 21.
    Tobin EF, Young TM, Raps D, Rohr O (2011) Comparison of liquid impingement results from whirling arm and water-jet rain erosion test facilities. Wear 271:2625–2631.  https://doi.org/10.1016/j.wear.2011.02.023 CrossRefGoogle Scholar
  22. 22.
    Tcharkhtchi A, Farzaneh S, Abdallah-Elhirtsi S et al (2014) Thermal aging effect on mechanical properties of polyurethane. Int J Polym Anal Charact 19:571–584CrossRefGoogle Scholar
  23. 23.
    Stodola P, Jamrichova Z, Stodola J (2012) Modelling of erosion effects on coatings of military vehicle components. Trans FAMENA 36:33–44Google Scholar
  24. 24.
    King RB (1965) Rain erosion testing at supersonic speeds using rocket-propelled vehicles. In: Fyall AA, King RB (eds) Proceedings of the istlnt. Conference on rain erosion and association phenomenom, RAEFarnborough, UK, pp 49–57Google Scholar
  25. 25.
    McDonald JE (1954) The shape and aerodynamics of large raindrops. J Meteorol 11:478–494CrossRefGoogle Scholar
  26. 26.
    Pruppacher HR, Beard KV (1970) A wind tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in air. Q J R Meteorol Soc 96:247–256ADSCrossRefGoogle Scholar
  27. 27.
    Beard KV, Bringi VN, Thurai M (2010) A new understanding of raindrop shape. Atmos Res 97:396–415CrossRefGoogle Scholar
  28. 28.
    Beard KV, Chuang C (1987) A new model for the equilibrium shape of raindrops. J Atmos Sci 44:1509–1524ADSCrossRefGoogle Scholar
  29. 29.
    Sagol E, Reggio M, Ilinca A (2013) Issues concerning roughness on wind turbine blades. Renew Sustain Energy Rev 23:514–525CrossRefGoogle Scholar
  30. 30.
    Dalili N, Edrisy A, Carriveau R (2009) A review of surface engineering issues critical to wind turbine performance. Renew Sustain Energy Rev 13:428–438CrossRefGoogle Scholar
  31. 31.
    Kirols HS, Kevorkov D, Uihlein A, Medraj M (2015) The effect of initial surface roughness on water droplet erosion behaviour. Wear 342:198–209CrossRefGoogle Scholar
  32. 32.
    Adler WF (1977) Liquid drop collisions on deformable media. J Mater Sci 12:1253–1271ADSCrossRefGoogle Scholar
  33. 33.
    Najafabadi AH, Razavi RS, Mozaffarinia R, Rahimi H (2014) A new approach of improving rain erosion resistance of nanocomposite sol–gel coatings by optimization process factors. Metall Mater Trans A 45:2522–2531CrossRefGoogle Scholar
  34. 34.
    Mishnaevsky L Jr (2015) Nanostructured interfaces for enhancing mechanical properties of materials: computational micromechanical studies. Compos B 68:75–84CrossRefGoogle Scholar
  35. 35.
    Doagou-Rad S, Jensen JS, Islam A, Mishnaevsky L (2019) Multiscale molecular dynamics-FE modeling of polymeric nanocomposites reinforced with carbon nanotubes and graphene. Compos Struct 217:27–36.  https://doi.org/10.1016/j.compstruct.2019.03.017 CrossRefGoogle Scholar
  36. 36.
    Valaker EA, Armada S, Wilson S (2015) Droplet erosion protection coatings for offshore wind turbine blades. Energy Proc 80:263–275CrossRefGoogle Scholar
  37. 37.
    Syamsundar C, Chatterjee D, Kamaraj M, Maiti AK (2015) Erosion characteristics of nanoparticle-reinforced polyurethane coatings on stainless steel substrate. J Mater Eng Perform 24:1391–1405.  https://doi.org/10.1007/s11665-015-1403-7 CrossRefGoogle Scholar
  38. 38.
    Zhao W, Wang Y, Liu C et al (2010) Erosion–corrosion of thermally sprayed coatings in simulated splash zone. Surf Coat Technol 205:2267–2272.  https://doi.org/10.1016/j.surfcoat.2010.09.011 CrossRefGoogle Scholar
  39. 39.
    Mishnaevsky Jr. L, Fæster S, Mikkelsen L et al (2019) Micromechanisms of leading edge erosion of wind turbine blades: X-ray tomography analysis and computational studies. Wind Energy (accepted for publication)Google Scholar
  40. 40.
    Eid KF, Panth M, Sommers AD (2018) The physics of water droplets on surfaces: exploring the effects of roughness and surface chemistry. Eur J Phys 39:25804CrossRefGoogle Scholar
  41. 41.
    Worthington AM, Cole RS (1897) Impact with a liquid surface studied by the aid of instantaneous photography. Philos Trans R Soc Lond Ser A Math Phys Sci 189:137–148.  https://doi.org/10.1098/rsta.1897.0005 ADSCrossRefzbMATHGoogle Scholar
  42. 42.
    Worthington AM, Cole RS (1900) Impact with a liquid surface studied by the aid of instantaneous photography. Paper II. Philos Trans R Soc London Ser A Contain Pap Math Phys Charact 194:175–199ADSCrossRefGoogle Scholar
  43. 43.
    Levin Z, Hobbs PV (1971) Splashing of water drops on solid and wetted surfaces: hydrodynamics and charge separation. Philos Trans R Soc London Ser A Math Phys Sci 269:555–585ADSCrossRefGoogle Scholar
  44. 44.
    Brunton JH (1967) Erosion by liquid shock. In: Fyall AA, King RB (ed) Proceedings International Conference Rain Erosion. pp 821–823Google Scholar
  45. 45.
    Miller GF, Pursey H (1954) The field and radiation impedance of mechanical radiators on the free surface of a semi-infinite isotropic solid. Proc R Soc Lond Ser A Math Phys Sci 223:521–541ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    Miller GF, Pursey H, Bullard EC (1955) On the partition of energy between elastic waves in a semi-infinite solid. Proc R Soc Lond Ser A Math Phys Sci 233:55–69ADSCrossRefGoogle Scholar
  47. 47.
    Haosheng C, Shihan L (2009) Inelastic damages by stress wave on steel surface at the incubation stage of vibration cavitation erosion. Wear 266:69–75CrossRefGoogle Scholar
  48. 48.
    Bowden FP, Brunton JH (1961) The deformation of solids by liquid impact at supersonic speeds. Proc R Soc Lond Ser A Math Phys Sci 263:433–450ADSCrossRefGoogle Scholar
  49. 49.
    Engel OG, Nakamura T (1974) Investigation of composite coating systems for rain-erosion protection. Florida Atlantic Univ, Boca RatonCrossRefGoogle Scholar
  50. 50.
    Mishnaevsky L Jr, Sütterlin J (2019) Micromechanical model of surface erosion of polyurethane coatings on wind turbine blades. Polym Degrad Stab 166:283–289CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Wind Energy, Risø CampusTechnical University of DenmarkRoskildeDenmark

Personalised recommendations