pp 1–12 | Cite as

Extended virtual element method for the torsion problem of cracked prismatic beams

  • Andrea Chiozzi
  • Elena BenvenutiEmail author
Computational Models for ‘Complex’ Materials and Structures, beyond the Finite Elements


In this paper, we investigate the capability of the recently proposed extended virtual element method (X-VEM) to efficiently and accurately solve the problem of a cracked prismatic beam under pure torsion, mathematically described by the Poisson equation in terms of a scalar stress function. This problem is representative of a wide class of elliptic problems for which classic finite element approximations tend to converge poorly, due to the presence of singularities. The X-VEM is a stabilized Galerkin formulation on arbitrary polygonal meshes derived from the virtual element method (VEM) by augmenting the standard virtual element space with an additional contribution that consists of the product of virtual nodal basis functions with a suitable enrichment function. In addition, an extended projector that maps functions lying in the extended virtual element space onto linear polynomials and the enrichment function is employed. Convergence of the method on both quadrilateral and polygonal meshes for the cracked beam torsion problem is studied by means of numerical experiments. The computed results affirm the sound accuracy of the method and demonstrate a significantly improved convergence rate, both in terms of energy and stress intensity factor, when compared to standard finite element method and VEM.


Virtual element method Extended virtual element method Partition of unity method Cracked beam torsion problem Singularities Polygonal meshes 



The Authors are grateful to Prof. N. Sukumar and Dr. G. Manzini for their valuable contributions to the developments contained in this paper.


This study was funded by Ministero dell’Istruzione, dell’ Università e della Ricerca, PRIN: Progetti di Ricerca di Rilevante Interesse Nazionale (Grant No. 2015LYYXA8).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Grisvard P (1985) Elliptic problems in nonsmooth domains. Pitman Publishing Inc, BostonzbMATHGoogle Scholar
  2. 2.
    Sih G, Paris P, Erdogan F (1962) Crack-tip, stress-intensity factors for plane extension and plate bending problems. J Appl Mech 29(2):306–312Google Scholar
  3. 3.
    Strang W, Fix G (1973) An analysis of the finite element method. Prentice-Hall, Englewood CliffszbMATHGoogle Scholar
  4. 4.
    Fix G, Gulati S, Wakoff G (1973) On the use of singular functions with finite element approximations. J Comput Phys 13:209–228ADSMathSciNetzbMATHGoogle Scholar
  5. 5.
    Olson L, Georgiou G, Schultz W (1991) An efficient finite element method for treating singularities in Laplace’s equation. J Comput Phys 96:391–410ADSMathSciNetzbMATHGoogle Scholar
  6. 6.
    Melenk JM, Babuška I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139:289–314ADSMathSciNetzbMATHGoogle Scholar
  7. 7.
    Babuška I, Melenk JM (1997) The partition of unity method. Int J Numer Methods Eng 40:727–758MathSciNetzbMATHGoogle Scholar
  8. 8.
    Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–150MathSciNetzbMATHGoogle Scholar
  9. 9.
    Sukumar N, Dolbow JE, Moës N (2015) Extended finite element method in computational fracture mechanics: a retrospective examination. Int J Fract 196(1):189–206Google Scholar
  10. 10.
    Benvenuti E (2014) XFEM with equivalent eigenstrain for matrix-inclusion interfaces. Comput Mech 53(5):893–908MathSciNetzbMATHGoogle Scholar
  11. 11.
    Ventura G, Benvenuti E (2015) Equivalent polynomials for quadrature in heaviside function enriched elements. Int J Numer Methods Eng 102(3–4):688–710MathSciNetzbMATHGoogle Scholar
  12. 12.
    Benvenuti E (2017) An effective XFEM with equivalent eigenstrain for stress intensity factors of homogeneous plates. Comput Methods Appl Mech Eng 321:427–454ADSMathSciNetGoogle Scholar
  13. 13.
    Beirão da Veiga L, Brezzi F, Cangiani A, Manzini G, Marini LD, Russo A (2013) Basic principles of virtual element methods. Math Models Methods Appl Sci 23:119–214MathSciNetzbMATHGoogle Scholar
  14. 14.
    Beirão da Veiga L, Brezzi F, Marini LD, Russo A (2014) The Hitchhiker’s guide to the virtual element method. Math Models Methods Appl Sci 24(8):1541–1573MathSciNetzbMATHGoogle Scholar
  15. 15.
    Antonietti P, Manzini G, Verani M (2018) The fully nonconforming virtual element method for biharmonic problems. Math Models Methods Appl Sci 28(2):387–407MathSciNetzbMATHGoogle Scholar
  16. 16.
    Beirão da Veiga L, Brezzi F, Marini D (2013) Virtual elements for linear elas-ticity problems. SIAM J Numer Anal 51(2):794–812MathSciNetzbMATHGoogle Scholar
  17. 17.
    Pingaro M, Reccia E, Trovalusci P, Masiani R (2019) Fast statistical homogenization procedure (FSHP) for particle random composites using virtual element method. Comput Mech 64(1):197–210MathSciNetzbMATHGoogle Scholar
  18. 18.
    da Veiga LB, Chernov A, Mascotto L, Russo A (2018) Exponential convergence of the hp virtual element method in presence of corner singularities. Numer Math 138:581–613MathSciNetzbMATHGoogle Scholar
  19. 19.
    Nguyen-Thanh VM, Zhuang X, Nguyen-Xuan H, Rabczuk T, Wriggers P (2018) A virtual element method for 2D linear elastic fracture analysis. Comput Methods Appl Mech Eng 340:366–395ADSMathSciNetGoogle Scholar
  20. 20.
    Benvenuti E, Chiozzi A, Manzini G, Sukumar N (2019) Extended virtual element method for the laplace problem with singularities and discontinuities. Comput Methods Appl Mech Eng 356:571–597ADSMathSciNetGoogle Scholar
  21. 21.
    Perugia I, Pietra P, Russo A (2016) A plane wave virtual element method for the Helmholtz problem. ESAIM Math Model Numer Anal 50(3):783–808MathSciNetzbMATHGoogle Scholar
  22. 22.
    Lehman S (1959) Developments at an analytic corner of solutions of elliptic partial differential equations. J Math Mech 8:727–760MathSciNetzbMATHGoogle Scholar
  23. 23.
    Barré de Saint-Venant A (1856) De la torsion des prismes avec des considérations sur leurs flexion ainsi que sur l’équilibre des solides élastiques en général et des formules pratiques pour le calcul de leur résistance à divers efforts s’exerçant simultanément, ImprimerieGoogle Scholar
  24. 24.
    Prandtl L (1903) Zur Torsion von Prismatischen Stäben. Z Phys 4:758–770zbMATHGoogle Scholar
  25. 25.
    Beirão da Veiga L, Dassi F, Russo A (2017) High-order virtual element method on polyhedral meshes. Comput Math Appl 74(5):1110–1122MathSciNetzbMATHGoogle Scholar
  26. 26.
    Dassi F, Mascotto L (2018) Exploring high-order three dimensional virtual elements: bases and stabilizations. Comput Math Appl 75(9):3379–3401MathSciNetzbMATHGoogle Scholar
  27. 27.
    Mascotto L (2018) Ill-conditioning in the virtual element method: stabilizations and bases. Numer Methods Partial Differ Equ 34(4):1258–1281MathSciNetzbMATHGoogle Scholar
  28. 28.
    Chessa J, Wang H, Belytschko T (2003) On the construction of blending elements for local partition of unity enriched finite elements. Int J Numer Methods Eng 57(7):1015–1038zbMATHGoogle Scholar
  29. 29.
    Ventura G, Gracie R, Belytschko T (2009) Fast integration and weight function blending in the extended finite element method. Int J Numer Methods Eng 77(1):1–29MathSciNetzbMATHGoogle Scholar
  30. 30.
    Fries T (2007) A corrected XFEM approximation without problems in blending elements. Int J Numer Methods Eng 75(5):503–532MathSciNetzbMATHGoogle Scholar
  31. 31.
    Chin EB, Lasserre JB, Sukumar N (2015) Numerical integration of homogeneous functions on convex and nonconvex polygons and polyhedra. Comput Mech 56(6):967–981MathSciNetzbMATHGoogle Scholar
  32. 32.
    Chin EB, Lasserre JB, Sukumar N (2017) Modeling crack discontinuities without element-partitioning in the extended finite element method. Int J Numer Methods Eng 86(11):1021–1048MathSciNetGoogle Scholar
  33. 33.
    Laborde P, Pommier J, Renard Y, Salaün M (2005) High-order extended finite element method for cracked domains. Int J Numer Methods Eng 64(3):354–381zbMATHGoogle Scholar
  34. 34.
    Béchet E, Minnebo H, Moës N, Burgardt B (2005) Improved implementation and robustness study of the X-FEM for stress analysis around cracks. Int J Numer Methods Eng 64(8):1033–1056zbMATHGoogle Scholar
  35. 35.
    Ventura G, Moran B, Belytschko T (2005) Dislocations by partition of unity. Int J Numer Methods Eng 62(11):1463–1487zbMATHGoogle Scholar
  36. 36.
    Talischi C, Paulino G, Pereira A, Menezes F (2012) PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct Multidiscip Optim 45(3):309–328MathSciNetzbMATHGoogle Scholar
  37. 37.
    Bathe K (1982) Finite element procedures in engineering analysis. Prentice-Hall, Englewood CliffsGoogle Scholar
  38. 38.
    Mousavi SE, Sukumar N (2010) Generalized Duffy transformation for integrating vertex singularities. Comput Mech 45(2–3):127–140MathSciNetGoogle Scholar
  39. 39.
    Motz H (1947) The treatment of singularities of partial differential equations by relaxation methods. Q Appl Math 4(4):371–377MathSciNetzbMATHGoogle Scholar
  40. 40.
    Wait R, Mitchell A (1971) Corner singularities in elliptic problems by finite element methods. J Comput Phys 8(1):45–52ADSzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of EngineeringUniversity of FerraraFerraraItaly

Personalised recommendations