Advertisement

Meccanica

, Volume 54, Issue 11–12, pp 1823–1840 | Cite as

Impact of distortional hardening and the strength differential effect on the prediction of large deformation behavior of the Ti6Al4V alloy

  • Víctor TuninettiEmail author
  • Gaëtan Gilles
  • Paulo Flores
  • Gonzalo Pincheira
  • Laurent Duchêne
  • Anne-Marie Habraken
Article

Abstract

The ability of three plasticity models to predict the mechanical behavior of Ti6Al4V until fracture is presented. The first model is the orthotropic yield criterion CPB06 developed by Cazacu et al. (Int J Plast 22:1171–1194, 2006) with a distortional hardening, allowing for the description of material anisotropy and the strength differential effect. The second model is the anisotropic Hill’48 yield criterion with distortional hardening, describing the material anisotropy with quadratic functions but is unable to model the strength differential effect. Finally, the third model is the classical Hill’48 yield locus with isotropic hardening. Distortional hardening is modeled through five yield surfaces associated with five levels of plastic work. Each model is validated by comparing the finite element predictions with experimental results, such as the load and displacement field histories of specimens subjected to different stress triaxiality values. Tensile tests are performed on round bars with a V-notch, a through-hole, and two different radial notches; compression tests are performed on elliptical cross-section samples. The numerical results show that none of the models can perfectly predict both the measured load and the sample shape used for validation. However, the CPB06 yield criterion with distortional hardening minimizes the global error of the model predictions. The results provide a quantification of the influence of mechanical features such as hardening phenomenon, plastic anisotropy, and tension–compression asymmetry. The impact of these features on the prediction of the post-necking deformation behavior of the Ti6Al4V alloy is explored.

Keywords

Finite element modeling CPB06 yield criterion Tension–compression asymmetry Plastic anisotropy Distortional hardening Titanium alloys 

Notes

Acknowledgements

The authors thank the Chilean Scientific Research Fund CONICYT FONDECYT 11170002, the Universidad de La Frontera Internal Research Fund DIUFRO (Project DI17-0070), the Marco multiannual convention FRO1855, and the cooperation with WBI/AGCID SUB2019/419031 (DIE19-0005) and the Belgian Scientific Research Fund FNRS for financial support. The authors would also like to thank O. Milis for its technical support.

Funding

This study was funded by CONICYT (FONDECYT 11170002), DIUFRO (DI17-0070), WBI/AGCID (SUB2019/419031), the Marco multiannual convention FRO1855 and the Belgian Scientific Research Fund FNRS.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Giglio M, Manes A, Viganò F (2012) Ductile fracture locus of Ti–6Al–4V titanium alloy. Int J Mech Sci 54:121–135.  https://doi.org/10.1016/j.ijmecsci.2011.10.003 CrossRefGoogle Scholar
  2. 2.
    Hernandez-Rodriguez MAL, Contreras-Hernandez GR, Juarez-Hernandez A, Beltran-Ramirez B, Garcia-Sanchez E (2015) Failure analysis in a dental implant. Eng Fail Anal 57:236–242.  https://doi.org/10.1016/j.engfailanal.2015.07.035 CrossRefGoogle Scholar
  3. 3.
    Simonetto E, Venturato G, Ghiotti A, Bruschi S (2018) Modelling of hot rotary draw bending for thin-walled titanium alloy tubes. Int J Mech Sci 148:698–706.  https://doi.org/10.1016/j.ijmecsci.2018.09.037 CrossRefGoogle Scholar
  4. 4.
    Wang Q, Bruschi S, Ghiotti A, Mu Y (2019) Modelling of fracture occurrence in Ti6Al4V sheets at elevated temperature accounting for anisotropic behaviour. Int J Mech Sci 150:471–483.  https://doi.org/10.1016/j.ijmecsci.2018.10.045 CrossRefGoogle Scholar
  5. 5.
    Badr MO, Barlat F, Rolfe B, Lee MG, Hodgson P, Weiss M (2016) Constitutive modelling of high strength titanium alloy Ti-6Al-4V for sheet forming applications at room temperature. Int J Solids Struct 80:334–347.  https://doi.org/10.1016/j.ijsolstr.2015.08.025 CrossRefGoogle Scholar
  6. 6.
    Barros PD, Alves JL, Oliveira MC, Menezes LF (2016) Modeling of tension–compression asymmetry and orthotropy on metallic materials: numerical implementation and validation. Int J Mech Sci 114:217–232.  https://doi.org/10.1016/j.ijmecsci.2016.05.020 CrossRefGoogle Scholar
  7. 7.
    Tuninetti V, Habraken AM (2014) Impact of anisotropy and viscosity to model the mechanical behavior of Ti–6Al–4V alloy. Mater Sci Eng A 605:39–50.  https://doi.org/10.1016/j.msea.2014.03.009 CrossRefGoogle Scholar
  8. 8.
    Cazacu O, Revil-Baudard B, Chandola N (2018) Plasticity-damage couplings: from single crystal to polycrystalline materials. Springer, Basel.  https://doi.org/10.1007/978-3-319-92922-4 CrossRefzbMATHGoogle Scholar
  9. 9.
    Alabort E, Kontis P, Barba D, Dragnevski K, Reed RC (2016) On the mechanisms of superplasticity in Ti–6Al–4V. Acta Mater 105:449–463.  https://doi.org/10.1016/j.actamat.2015.12.003 CrossRefGoogle Scholar
  10. 10.
    Liu J, Khan AS, Takacs L, Meredith CS (2015) Mechanical behavior of ultrafine-grained/nanocrystalline titanium synthesized by mechanical milling plus consolidation: experiments, modeling and simulation. Int J Plast 64:151–163.  https://doi.org/10.1016/j.ijplas.2014.08.007 CrossRefGoogle Scholar
  11. 11.
    Meredith CS, Khan AS (2012) Texture evolution and anisotropy in the thermo-mechanical response of UFG Ti processed via equal channel angular pressing. Int J Plast 30–31:202–217.  https://doi.org/10.1016/j.ijplas.2011.10.006 CrossRefGoogle Scholar
  12. 12.
    Djavanroodi F, Derogar A (2010) Experimental and numerical evaluation of forming limit diagram for Ti6Al4V titanium and Al6061-T6 aluminum alloys sheets. Mater Des 31:4866–4875.  https://doi.org/10.1016/j.matdes.2010.05.030 CrossRefGoogle Scholar
  13. 13.
    Li H, Zhang HQ, Yang H, Fu MW, Yang H (2017) Anisotropic and asymmetrical yielding and its evolution in plastic deformation: titanium tubular materials. Int J Plast 90:177–211.  https://doi.org/10.1016/j.ijplas.2017.01.004 CrossRefGoogle Scholar
  14. 14.
    Aretz H, Barlat F (2013) New convex yield functions for orthotropic metal plasticity. Int J Nonlinear Mech 51:97–111.  https://doi.org/10.1016/j.ijnonlinmec.2012.12.007 CrossRefGoogle Scholar
  15. 15.
    Abedini A, Butcher C, Nemcko MJ, Kurukuri S, Worswick MJ (2017) Constitutive characterization of a rare-earth magnesium alloy sheet (ZEK100-O) in shear loading: studies of anisotropy and rate sensitivity. Int J Mech Sci 128–129:54–69.  https://doi.org/10.1016/j.ijmecsci.2017.04.013 CrossRefGoogle Scholar
  16. 16.
    Cazacu O, Plunkett B, Barlat F (2006) Orthotropic yield criterion for hexagonal closed packed metals. Int J Plast 22:1171–1194.  https://doi.org/10.1016/j.ijplas.2005.06.001 CrossRefzbMATHGoogle Scholar
  17. 17.
    Revil-Baudard B, Chandola N, Cazacu O (2018) Prediction of the torsional response of HCP metals. J Phys Conf Ser 1063:012045.  https://doi.org/10.1088/1742-6596/1063/1/012045 CrossRefGoogle Scholar
  18. 18.
    Baral M, Hama T, Knudsen E, Korkolis YP (2018) Plastic deformation of commercially-pure titanium: experiments and modeling. Int J Plast 105:164–194.  https://doi.org/10.1016/j.ijplas.2018.02.009 CrossRefGoogle Scholar
  19. 19.
    Hu Q, Li X, Han X, Li H, Chen J (2017) A normalized stress invariant-based yield criterion: modeling and validation. Int J Plast 99:248–273.  https://doi.org/10.1016/j.ijplas.2017.09.010 CrossRefGoogle Scholar
  20. 20.
    Khan AS, Kazmi R, Farrokh B (2007) Multiaxial and non-proportional loading responses, anisotropy and modeling of Ti–6Al–4V titanium alloy over wide ranges of strain rates and temperatures. Int J Plast 23:931–950.  https://doi.org/10.1016/j.ijplas.2006.08.006 CrossRefzbMATHGoogle Scholar
  21. 21.
    Holmen JK, Frodal BH, Hopperstad OS, Børvik T (2017) Strength differential effect in age hardened aluminum alloys. Int J Plast 99:144–161.  https://doi.org/10.1016/j.ijplas.2017.09.004 CrossRefGoogle Scholar
  22. 22.
    Lee EH, Stoughton TB, Yoon JW (2017) A yield criterion through coupling of quadratic and non-quadratic functions for anisotropic hardening with non-associated flow rule. Int J Plast 99:120–143.  https://doi.org/10.1016/j.ijplas.2017.08.007 CrossRefGoogle Scholar
  23. 23.
    Kondori B, Madi Y, Besson J, Benzerga AA (2018) Evolution of the 3D plastic anisotropy of HCP metals: experiments and modeling. Int J Plast.  https://doi.org/10.1016/j.ijplas.2017.12.002 CrossRefGoogle Scholar
  24. 24.
    Badr OM, Rolfe B, Zhang P, Weiss M (2017) Applying a new constitutive model to analyse the springback behaviour of titanium in bending and roll forming. Int J Mech Sci 128–129:389–400.  https://doi.org/10.1016/j.ijmecsci.2017.05.025 CrossRefGoogle Scholar
  25. 25.
    Li H, Zhang HQ, Yang H, Fu MW, Yang H (2017) Anisotropic and asymmetrical yielding and its evolution in plastic deformation: titanium tubular materials. Int J Plast 90:177–211.  https://doi.org/10.1016/j.ijplas.2017.01.004 CrossRefGoogle Scholar
  26. 26.
    Piao MJ, Huh H, Lee I, Park L (2017) Characterization of hardening behaviors of 4130 Steel, OFHC Copper, Ti6Al4V alloy considering ultra-high strain rates and high temperatures. Int J Mech Sci 131–132:1117–1129.  https://doi.org/10.1016/j.ijmecsci.2017.08.013 CrossRefGoogle Scholar
  27. 27.
    Li H, Hu X, Yang H, Li L (2016) Anisotropic and asymmetrical yielding and its distorted evolution: modeling and applications. Int J Plast 82:127–158.  https://doi.org/10.1016/j.ijplas.2016.03.002 CrossRefGoogle Scholar
  28. 28.
    Tuninetti V, Gilles G, Milis O, Pardoen T, Habraken AM (2015) Anisotropy and tension–compression asymmetry modeling of the room temperature plastic response of Ti–6Al–4V. Int J Plast 67:53–68.  https://doi.org/10.1016/j.ijplas.2014.10.003 CrossRefGoogle Scholar
  29. 29.
    Charlier R, Habraken AM (1990) Numerical modellisation of contact with friction phenomena by the finite element method. Comput Geotech 9:59–72.  https://doi.org/10.1016/0266-352X(90)90029-U CrossRefGoogle Scholar
  30. 30.
    Charlier R, Cescotto S (1993) Frictional contact finite elements based on mixed variational principles. Int J Numer Meth Eng 36(10):1681–1701.  https://doi.org/10.1002/nme.1620361005 CrossRefzbMATHGoogle Scholar
  31. 31.
    Gerard P, Harrington J, Charlier R, Collin F (2012) Hydro-mechanical modelling of the development of preferential gas pathways in claystone. In: Mancuso C, Jommi C, D’Onza F (eds) Unsaturated soils: research and applications. Springer, BerlinGoogle Scholar
  32. 32.
    François B, Labiouse V, Dizier A, Marinelli F, Charlier R, Collin F (2014) Hollow cylinder tests on boom clay: modelling of strain localization in the anisotropic excavation damaged zone. Rock Mech Rock Eng 47:71–86ADSCrossRefGoogle Scholar
  33. 33.
    Bettaieb MB, Lemoine X, Duchêne L, Habraken AM (2009) Study of the formability of steels. Int J Mater Form 2:515–518CrossRefGoogle Scholar
  34. 34.
    Torres IN, Gilles G, Tchuindjang JT, Flores P, Lecomte-Beckers J, Habraken AM (2017) FE modeling of the cooling and tempering steps of bimetallic rolling mill rolls. Int J Mater Form 10:287–305CrossRefGoogle Scholar
  35. 35.
    Gilles G (2015) Experimental study and modeling of the quasi-static mechanical behavior of Ti6Al4V at room temperature. Dissertation, University of LiègeGoogle Scholar
  36. 36.
    Guzmán CF, Saavedra Flores E, Habraken AM (2018) Damage characterization in a ferritic steel sheet: experimental tests, parameter identification and numerical modeling. Int J Solids Struct 155:109–122.  https://doi.org/10.1016/j.ijsolstr.2018.07.014 CrossRefGoogle Scholar
  37. 37.
    Tuninetti V, Gilles G, Péron-Lührs V, Habraken AM (2012) Compression test for metal characterization using digital image correlation and inverse modeling. Proc IUTAM 4:206–2014.  https://doi.org/10.1016/j.piutam.2012.05.022 CrossRefGoogle Scholar
  38. 38.
    Tuninetti V, Gilles G, Milis O, Lecarme L, Habraken AM (2012) Compression test for plastic anisotropy characterization using optical full–field displacement measurement technique. In: Steel Res Int SE: 14th int conf metal forming, pp 1239–1242Google Scholar
  39. 39.
    Guzmán CF, Tuninetti V, Gilles G, Habraken AM (2015) Assessment of damage and anisotropic plasticity models to predict Ti-6Al-4V behavior. Key Eng Mater 651–653:575–580.  https://doi.org/10.4028/www.scientific.net/KEM.651-653.575 CrossRefGoogle Scholar
  40. 40.
    Duchêne L, El Houdaigui F, Habraken AM (2007) Length changes and texture prediction during free end torsion test of copper bars with FEM and remeshing techniques. Int J Plast 23:1417–1438.  https://doi.org/10.1016/j.ijplas.2007.01.008 CrossRefzbMATHGoogle Scholar
  41. 41.
    Li XK, Cescotto S (1997) A mixed element method in gradient plasticity for pressure dependent materials and modelling of strain localization. Comput Methods Appl Mech Eng 144:287–305.  https://doi.org/10.1016/S0045-7825(96)01175-9 ADSCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversidad de La FronteraTemucoChile
  2. 2.Digital Industries Software, Simulation and Test SolutionsSamtech S.A. - A Siemens CompanyAngleurBelgium
  3. 3.Department of Mechanical EngineeringUniversidad de ConcepciónConcepciónChile
  4. 4.Department of Industrial TechnologiesUniversidad de TalcaCuricóChile
  5. 5.ArGEnCo Department, MSM TeamUniversity of LiègeLiègeBelgium
  6. 6.Fonds de la Recherche Scientifique – F.N.R.S.–F.R.S.1000 BrusselsBelgium

Personalised recommendations