Advertisement

Meccanica

, Volume 54, Issue 9, pp 1365–1383 | Cite as

Random vibration mitigation of beams via tuned mass dampers with spring inertia effects

  • Giuseppe FaillaEmail author
  • Mario Di Paola
  • Antonina Pirrotta
  • Andrea Burlon
  • Iain Dunn
Stochastics and Probability in Engineering Mechanics
  • 275 Downloads

Abstract

The dynamics of beams equipped with tuned mass dampers is of considerable interest in engineering applications. Here, the purpose is to introduce a comprehensive framework to address the stochastic response of the system under stationary and non-stationary loads, considering inertia effects along the spring of every tuned mass damper applied to the beam. For this, the key step is to show that a tuned mass damper with spring inertia effects can be reverted to an equivalent external support, whose reaction force on the beam depends only on the deflection of the attachment point. On this basis, a generalized function approach provides closed analytical expressions for frequency and impulse response functions of the system. The expressions can be used for a straightforward calculation of the stochastic response, for any number of tuned mass dampers. Numerical results show that spring inertia effects may play an important role in applications, affecting considerably the system response.

Keywords

Beam Tuned mass damper Spring inertia effects Generalized function Stochastic response 

Notes

Funding

The authors gratefully acknowledge the financial support of PRIN 2015: “Advanced Mechanical Modeling of New Materials and Structures for the Solution of 2020 Horizon Challenges”. PI: prof. Mario Di Paola, University of Palermo, Italy.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Den Hartog JP (1962) Mechanical vibrations. McGraw-Hill, New YorkzbMATHGoogle Scholar
  2. 2.
    Housner GW et al (1997) Structural control: past, present and future. J Eng Mech 123(9):897–971.  https://doi.org/10.1061/(ASCE)0733-9399(1997)123:9(897) CrossRefGoogle Scholar
  3. 3.
    Spencer BF, Nagarajaiah S (2003) State of the art of structural control. J Struct Eng 129(7):845–856.  https://doi.org/10.1061/(ASCE)0733-9445(2003)129:7(845) CrossRefGoogle Scholar
  4. 4.
    Elias S, Matsagar V (2017) Research developments in vibration control of structures using passive tuned mass dampers. Annu Rev Control 44:129–156.  https://doi.org/10.1016/j.arcontrol.2017.09.015 CrossRefGoogle Scholar
  5. 5.
    Chen Y-H, Huang Y-H (2004) Timoshenko beam with tuned mass dampers and its design curves. J Sound Vib 278(4–5):873–888.  https://doi.org/10.1016/j.jsv.2003.10.013 ADSCrossRefzbMATHGoogle Scholar
  6. 6.
    Yang F, Sedaghati R, Esmailzadeh E (2009) Vibration suppression of non-uniform curved beams under random loading using optimal tuned mass damper. J Vib Control 15(2):233–261.  https://doi.org/10.1177/1077546308091220 MathSciNetCrossRefGoogle Scholar
  7. 7.
    Younesian D, Esmailzadeh E, Sedaghati R (2006) Passive vibration control of beams subjected to random excitations with peaked PSD. J Vib Control 12(9):941–953.  https://doi.org/10.1177/1077546306068060 CrossRefzbMATHGoogle Scholar
  8. 8.
    Das AK, Dey SS (1992) Effects of tuned mass dampers on random response of bridges. Comp Struct 43(4):745–750.  https://doi.org/10.1016/0045-7949(92)90518-5 CrossRefGoogle Scholar
  9. 9.
    Adam C, Di Lorenzo S, Failla G, Pirrotta A (2017) On the moving load problem in beam structures equipped with tuned mass dampers. Meccanica 52:3101–3115.  https://doi.org/10.1007/s11012-016-0599-4 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Samani FS, Pellicano F (2009) Vibration reduction on beams subjected to moving loads using linear and nonlinear dynamic absorbers. J Sound Vib 325(4–5):742–754.  https://doi.org/10.1016/j.jsv.2009.04.011 ADSCrossRefGoogle Scholar
  11. 11.
    Lee C-L, Chen Y-T, Chung L-L, Wang Y-P (2006) Optimal design theories and applications of tuned mass dampers. Eng Struct 28(1):43–53.  https://doi.org/10.1016/j.engstruct.2005.06.023 CrossRefGoogle Scholar
  12. 12.
    Salvi J, Rizzi E, Rustighi E, Ferguson NS (2018) Optimum tuning of passive tuned mass dampers for the mitigation of pulse-like responses. J Vib Acoust 140(6):061014.  https://doi.org/10.1115/1.4040475 CrossRefGoogle Scholar
  13. 13.
    Salvi J, Rizzi E (2017) Optimum earthquake-tuned TMDs: seismic performance and new design concept of balance of split effective modal masses. Soil Dyn Earthq Eng 101:67–80.  https://doi.org/10.1016/j.soildyn.2017.05.029 CrossRefGoogle Scholar
  14. 14.
    Rayleigh JWS (1945) The theory of sound, vol 1, 2nd edn. Dover, New YorkzbMATHGoogle Scholar
  15. 15.
    Yamamoto Y (1999) Spring’s effective mass in spring mass system free vibration. J Sound Vib 220(3):564–570.  https://doi.org/10.1006/jsvi.1998.1944 ADSCrossRefGoogle Scholar
  16. 16.
    Wu J-S, Hsu T-F (2007) Free vibration analyses of simply supported beams carrying multiple point masses and spring-mass systems with mass of each helical spring considered. Int J Mech Sci 49:834–852.  https://doi.org/10.1016/j.ijmecsci.2006.11.015 CrossRefGoogle Scholar
  17. 17.
    Cha PD, Chan M, Nielsen G (2008) Eigenfrequencies of an arbitrarily supported beam carrying multiple in-span elastic rod-mass systems. J Vib Acoust 130:061008.  https://doi.org/10.1115/1.2980384 CrossRefGoogle Scholar
  18. 18.
    Gürgöze M, Zeren S, Bicak MMA (2008) On the consideration of the masses of helical springs in damped combined systems consisting of two continua. Struct Eng Mech 28(2):167–188.  https://doi.org/10.12989/sem.2008.28.2.167 CrossRefGoogle Scholar
  19. 19.
    Gürgöze M, Zeren S (2011) Consideration of the masses of helical springs in forced vibrations of damped combined systems. Mech Res Commun 38:239–243.  https://doi.org/10.1016/j.mechrescom.2011.03.001 CrossRefzbMATHGoogle Scholar
  20. 20.
    Gürgöze M (2005) On the eigenfrequencies of a cantilever beam carrying a tip spring-mass system with mass of the helical spring considered. J Sound Vib 282:1221–1230.  https://doi.org/10.1016/j.jsv.2004.04.020 ADSCrossRefGoogle Scholar
  21. 21.
    Gürgöze M, Çakar O, Zeren S (2006) On the frequency equation of a combined system consisting of a simply supported beam and in-span helical spring-mass with mass of the helical spring considered. J Sound Vib 295:436–449.  https://doi.org/10.1016/j.jsv.2006.01.027 ADSCrossRefGoogle Scholar
  22. 22.
    Wu J-J (2006) Use of equivalent mass method for free vibration analyses of a beam carrying multiple two-dof spring-mass systems with inertia effect of the helical springs considered. Int J Numer Meth Eng 65:653–678.  https://doi.org/10.1002/nme.1460 CrossRefzbMATHGoogle Scholar
  23. 23.
    Wu J-J (2006) Study on the inertia effect of helical spring of the absorber on suppressing the dynamic responses of a beam subjected to a moving load. J Sound Vib 297:981–999.  https://doi.org/10.1016/j.jsv.2006.05.011 ADSCrossRefGoogle Scholar
  24. 24.
    Yavari A, Sarkani S, Moyer ET (2000) On applications of generalized functions to beam bending problems. Int J Solids Struct 37:5675–5705.  https://doi.org/10.1016/S0020-7683(99)00271-1 MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Falsone G (2002) The use of generalised functions in the discontinuous beam bending differential equation. Int J Eng Educ 18(3):337–343Google Scholar
  26. 26.
    Falsone G (2018) The use of generalized functions modeling the concentrated loads on Timoshenko beams. Struct Eng Mech 67(4):385–390.  https://doi.org/10.12989/sem.2018.67.4.385 MathSciNetGoogle Scholar
  27. 27.
    Caddemi S, Caliò I (2013) The exact explicit dynamic stiffness matrix of multi-cracked Euler–Bernoulli beam and applications to damaged frame structures. J Sound Vib 332(12):3049–3063.  https://doi.org/10.1016/j.jsv.2013.01.003 ADSCrossRefGoogle Scholar
  28. 28.
    Caddemi S, Caliò I, Cannizzaro F (2017) The dynamic stiffness matrix (DSM) of axially loaded multi-cracked frames. Mech Res Commun 84:90–97.  https://doi.org/10.1016/j.mechrescom.2017.06.012 CrossRefGoogle Scholar
  29. 29.
    Burlon A, Failla G, Arena F (2016) Exact frequency response analysis of axially loaded beams with viscoelastic dampers. Int J Mech Sci 115–116:370–384.  https://doi.org/10.1016/j.ijmecsci.2016.07.024 CrossRefGoogle Scholar
  30. 30.
    Failla G (2016) An exact generalised function approach to frequency response analysis of beams and plane frames with the inclusion of viscoelastic damping. J Sound Vib 360:171–202.  https://doi.org/10.1016/j.jsv.2015.09.006 ADSCrossRefGoogle Scholar
  31. 31.
    Burlon A, Failla G, Arena F (2017) Coupled bending and torsional free vibrations of beams with in-span supports and attached masses. Eur J Mech A Solids 66:387–411.  https://doi.org/10.1016/j.euromechsol.2017.07.015 MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Burlon A, Failla G, Arena F (2018) Exact frequency response of two-node coupled bending-torsional beam element with attachments. Appl Math Model 63:508–537.  https://doi.org/10.1016/j.apm.2018.06.047 MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Di Lorenzo S, Adam C, Burlon A, Failla G, Pirrotta A (2018) Flexural vibrations of discontinuous layered elastically bonded beams. Compos Part B Eng 135:175–188.  https://doi.org/10.1016/j.compositesb.2017.09.059 CrossRefGoogle Scholar
  34. 34.
    Failla G (2019) An exact modal analysis approach to vibration analysis of structures with mass-spring subsystems and rotational joints. J Sound Vib 438:191–219.  https://doi.org/10.1016/j.jsv.2018.09.025 ADSCrossRefGoogle Scholar
  35. 35.
    Donà M, Palmeri A, Lombardo M, Cicirello A (2015) An efficient two-node finite element formulation of multi-damaged beams including shear deformation and rotatory inertia. Comput Struct 147:96–106.  https://doi.org/10.1016/j.compstruc.2014.10.002 CrossRefGoogle Scholar
  36. 36.
    Wang J, Qiao P (2007) Vibration of beams with arbitrary discontinuities and boundary conditions. J Sound Vib 308:12–27.  https://doi.org/10.1016/j.jsv.2007.06.071 ADSCrossRefGoogle Scholar
  37. 37.
    Oliveto G, Santini A, Tripodi E (1997) Complex modal analysis of a flexural vibrating beam with viscous end conditions. J Sound Vib 200(3):327–345.  https://doi.org/10.1006/jsvi.1996.0717 ADSCrossRefzbMATHGoogle Scholar
  38. 38.
    Veletsos AS, Ventura CE (1986) Modal analysis of non-classically damped linear systems. Earthq Eng Struct Dyn 14:217–243.  https://doi.org/10.1002/eqe.4290140205 CrossRefGoogle Scholar
  39. 39.
    Mathematica (2008) Version 7.0. Wolfram Research Inc., ChampaignGoogle Scholar
  40. 40.
    Shinozuka M, Deodatis G (1991) Simulation of stochastic processes by spectral representation. Appl Mech Rev 44(4):191–204.  https://doi.org/10.1115/1.3119501 ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    Vibratec (1988) High frequency—tuned mass damper. Stockholm. http://vibratec.se/products/high-frequency-tuned-mass-damper/. Accessed 1 Dec 2018
  42. 42.
    Krenk S, Høgsberg J (2016) Tuned resonant mass or inerter-based absorbers: unified calibration with quasi-dynamic flexibility and inertia correction. Proc R Soc A 472:20150718.  https://doi.org/10.1098/rspa.2015.0718 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    De Domenico D, Impollonia N, Ricciardi G (2018) Soil-dependent optimum design of a new passive vibration control system combining seismic base isolation with tuned inerter damper. Soil Dyn Earthq Eng 105:37–53.  https://doi.org/10.1016/j.soildyn.2017.11.023 CrossRefGoogle Scholar
  44. 44.
    De Domenico D, Ricciardi G (2018) An enhanced base isolation system equipped with optimal tuned mass damper inerter (TMDI). Earthq Eng Struct Dyn 47(5):1169–1192.  https://doi.org/10.1002/eqe.3011 CrossRefGoogle Scholar
  45. 45.
    Shi X, Zhu S (2018) Dynamic characteristics of stay cables with inerter dampers. J Sound Vib 423:287–305.  https://doi.org/10.1016/j.jsv.2018.02.042 ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Civil, Energy, Environmental and Materials Engineering (DICEAM)University of Reggio CalabriaReggio CalabriaItaly
  2. 2.Department of Civil, Environmental, Aerospace and Materials Engineering (DICAM)University of PalermoPalermoItaly

Personalised recommendations