, Volume 54, Issue 3, pp 411–427 | Cite as

Quasicontinuum multiscale modeling of the effect of rough surface on nanoindentation behavior

  • Hesam Moslemzadeh
  • Omid Alizadeh
  • Soheil MohammadiEmail author


Roughness of surface has as an important influence on identifying the mechanical behavior and performance of crystalline metals. In this study, nanoindentation simulations are conducted by the two dimensional quasicontinuum method to determine the load–penetration response and the critical load associated with the onset of plasticity in rough surfaces of a face-centered cubic single crystal copper. The arithmetic roughness index, ranging between 2 and 13 Å, is used to specify the roughness of surface. Results of indentation with different roughnesses are in good agreement with previous studies for the indenter size of 10–140 Å. The resultant load–penetration scattering, which stems from the roughness, indicates different dislocation nucleation steps, different subsequent dislocations intervals and varying stiffness values of samples. It can be concluded that the surface roughness has a significant effect on the first dislocation emission because of the indenter position and surface interactions beneath it. Moreover, the critical penetration depth for the first dislocation emission increases by the increase of the contact area between the indenter and surface.


Multiscale Quasicontinuum method Surface roughness Nanoindentation Dislocation nucleation Incipient plasticity 



The authors gratefully acknowledge the High Performance Computing Laboratory (HPC Lab), University of Tehran for the technical support. The authors wish to express their thanks to Professor E. Tadmor for his open source quasicontinuum code. The financial supports of Iran National Science Foundation (INSF) are gratefully acknowledged.


  1. 1.
    Raikov YN, Ashikhmin GV, Nikolaev AK, Revina NI, Kostin SA (2007) Nanotechnology for copper and copper alloys. Metallurgist 51(7):408Google Scholar
  2. 2.
    Paggi M, Zavarise G (2011) Contact mechanics of microscopically rough surfaces with graded elasticity. Eur J Mech A Solids 30(5):696–704zbMATHGoogle Scholar
  3. 3.
    Marshall JA (2015) Measuring copper surface roughness for high speed applications. In: IPCGoogle Scholar
  4. 4.
    Fischer-Cripps AC (2013) Nanoindentation. Springer, New YorkGoogle Scholar
  5. 5.
    Schuh CA (2006) Nanoindentation studies of materials. Mater Today 9(5):32–40Google Scholar
  6. 6.
    Jeng Y-R, Tan C-M (2003) Atomics statics approach. J Chin Soc Mech Eng 24(4):377–384Google Scholar
  7. 7.
    Bolesta A, Fomin V (2009) Molecular dynamics simulation of sphere indentation in a thin copper film. Phys Mesomech 12(3–4):117–123Google Scholar
  8. 8.
    Peng P, Liao G, Shi T, Tang Z, Gao Y (2010) Molecular dynamic simulations of nanoindentation in aluminum thin film on silicon substrate. Appl Surf Sci 256(21):6284–6290ADSGoogle Scholar
  9. 9.
    Imran M, Hussain F, Rashid M, Ahmad S (2012) Molecular dynamics study of the mechanical characteristics of Ni/Cu bilayer using nanoindentation. Chin Phys B 21(12):126802Google Scholar
  10. 10.
    Walter C, Mitterer C (2009) 3D versus 2D finite element simulation of the effect of surface roughness on nanoindentation of hard coatings. Surf Coat Technol 203(20):3286–3290Google Scholar
  11. 11.
    Walter C, Antretter T, Daniel R, Mitterer C (2007) Finite element simulation of the effect of surface roughness on nanoindentation of thin films with spherical indenters. Surf Coat Technol 202(4):1103–1107Google Scholar
  12. 12.
    Chen L, Ahadi A, Zhou J, Ståhl J-E (2014) Numerical and experimental study of the roughness effects on mechanical properties of AISI316L by nanoindentation. Model Numer Simul Mater Sci 4(04):153Google Scholar
  13. 13.
    Chen L, Ahadi A, Zhou J, Ståhl J-E (2016) Quantitative study of roughness effect in nanoindentation on AISI316L based on simulation and experiment. Proc Inst Mech Eng Part C J Mech Eng Sci 231:4067–4075Google Scholar
  14. 14.
    Zhu P, Hu Y, Fang F, Wang H (2012) Multiscale simulations of nanoindentation and nanoscratch of single crystal copper. Appl Surf Sci 258(10):4624–4631ADSGoogle Scholar
  15. 15.
    Kiely J, Hwang R, Houston J (1998) Effect of surface steps on the plastic threshold in nanoindentation. Phys Rev Lett 81(20):4424ADSGoogle Scholar
  16. 16.
    Zimmerman J, Kelchner C, Klein P, Hamilton J, Foiles S (2001) Surface step effects on nanoindentation. Phys Rev Lett 87(16):165507ADSGoogle Scholar
  17. 17.
    Bouzakis KD, Michailidis N, Hadjiyiannis S, Skordaris G, Erkens G (2002) The effect of specimen roughness and indenter tip geometry on the determination accuracy of thin hard coatings stress–strain laws by nanoindentation. Mater Charact 49(2):149–156Google Scholar
  18. 18.
    Donnelly E, Baker SP, Boskey AL, van der Meulen MCH (2006) Effects of surface roughness and maximum load on the mechanical properties of cancellous bone measured by nanoindentation. J Biomed Mater Res Part A 77(2):426–435Google Scholar
  19. 19.
    Boccaccio A, Uva AE, Papi M, Fiorentino M, De Spirito M, Monno G (2016) Nanoindentation characterisation of human colorectal cancer cells considering cell geometry, surface roughness and hyperelastic constitutive behaviour. Nanotechnology 28(4):045703ADSGoogle Scholar
  20. 20.
    Zhang T-Y, Xu W-H (2002) Surface effects on nanoindentation. J Mater Res 17(7):1715–1720ADSGoogle Scholar
  21. 21.
    Zhang T-Y, Xu W-H, Zhao M-H (2004) The role of plastic deformation of rough surfaces in the size-dependent hardness. Acta Mater 52(1):57–68Google Scholar
  22. 22.
    Qasmi M, Delobelle P (2006) Influence of the average roughness Rms on the precision of the Young’s modulus and hardness determination using nanoindentation technique with a Berkovich indenter. Surf Coat Technol 201(3):1191–1199Google Scholar
  23. 23.
    de Souza GB, Foerster CE, de Silva SLR, Lepienski CM (2006) Nanomechanical properties of rough surfaces. Materials Research 9(2):159–163Google Scholar
  24. 24.
    Kim J-Y, Kang S-K, Lee J-J, Jang J-I, Lee Y-H, Kwon D (2007) Influence of surface-roughness on indentation size effect. Acta Mater 55(10):3555–3562Google Scholar
  25. 25.
    Xia Y, Bigerelle M, Bouvier S, Iost A, Mazeran PE (2015) Quantitative approach to determine the mechanical properties by nanoindentation test: application on sandblasted materials. Tribol Int 82:297–304Google Scholar
  26. 26.
    Saber-Samandari S, Gross KA (2009) Effect of angled indentation on mechanical properties. J Eur Ceram Soc 29(12):2461–2467Google Scholar
  27. 27.
    Hansson P (2016) Influence of surface roughening on indentation behavior of thin copper coatings using a molecular dynamics approach. Comput Mater Sci 117:233–239Google Scholar
  28. 28.
    Tadmor E, Miller R, Phillips R, Ortiz M (1999) Nanoindentation and incipient plasticity. J Mater Res 14(6):2233–2250ADSGoogle Scholar
  29. 29.
    Miller R, Tadmor E, Phillips R, Ortiz M (1998) Quasicontinuum simulation of fracture at the atomic scale. Modell Simul Mater Sci Eng 6(5):607ADSGoogle Scholar
  30. 30.
    Shenoy VB, Miller R, Tadmor EB, Rodney D, Phillips R, Ortiz M (1999) An adaptive finite element approach to atomic-scale mechanics—the quasicontinuum method. J Mech Phys Solids 47(3):611–642ADSMathSciNetzbMATHGoogle Scholar
  31. 31.
    Alizadeh O, Tolooei Eshlaghi G, Mohammadi S (2016) Nanoindentation simulation of coated aluminum thin film using quasicontinuum method. Comput Mater Sci 111:12–22Google Scholar
  32. 32.
    Zhu A, He D, He R, Zou C (2016) Nanoindentation simulation on single crystal copper by quasi-continuum method. Mater Sci Eng A 674:76–81Google Scholar
  33. 33.
    Fanlin Z, Yi S (2006) Quasicontinuum simulation of nanoindentation of nickel film. Acta Mech Solida Sin 19(4):283–288Google Scholar
  34. 34.
    Jiang W-G, Su J-J, Feng X-Q (2008) Effect of surface roughness on nanoindentation test of thin films. Eng Fract Mech 75(17):4965–4972Google Scholar
  35. 35.
    Lu H, Li J, Ni Y (2011) Position effect of cylindrical indenter on nanoindentation into Cu thin film by multiscale analysis. Comput Mater Sci 50(10):2987–2992Google Scholar
  36. 36.
    Yu W, Shen S (2009) Effects of small indenter size and its position on incipient yield loading during nanoindentation. Mater Sci Eng A 526(1):211–218Google Scholar
  37. 37.
    Mei J, Li J, Ni Y, Wang H (2010) Multiscale simulation of indentation, retraction and fracture processes of nanocontact. Nanoscale Res Lett 5(4):692ADSGoogle Scholar
  38. 38.
    Jiang WG, Wang ZW (2012) Effect of surface roughness on nanocontact: quasicontinuum simulation. Advanced materials research. Trans Tech Publications 502:342–347Google Scholar
  39. 39.
    Amelang JS, Kochmann DM (2015) Surface effects in nanoscale structures investigated by a fully-nonlocal energy-based quasicontinuum method. Mech Mater 90:166–184Google Scholar
  40. 40.
    Amelang J, Venturini G, Kochmann D (2015) Summation rules for a fully nonlocal energy-based quasicontinuum method. J Mech Phys Solids 82:378–413ADSMathSciNetGoogle Scholar
  41. 41.
    Dobson M, Luskin M (2008) Analysis of a force-based quasicontinuum approximation. ESAIM Math Modell Numer Anal 42(1):113–139MathSciNetzbMATHGoogle Scholar
  42. 42.
    Shan D, Yuan L, Guo B (2005) Multiscale simulation of surface step effects on nanoindentation. Mater Sci Eng A 412(1):264–270Google Scholar
  43. 43.
    Lu H, Ni Y (2012) Effect of surface step on nanoindentation of thin films by multiscale analysis. Thin Solid Films 520(15):4934–4940ADSGoogle Scholar
  44. 44.
    Zhang Z, Ni Y (2012) Multiscale analysis of delay effect of dislocation nucleation with surface pit defect in nanoindentation. Comput Mater Sci 62:203–209Google Scholar
  45. 45.
    Wu J-J (2000) Simulation of rough surfaces with FFT. Tribol Int 33(1):47–58Google Scholar
  46. 46.
    Tao Q, Lee HP, Lim SP (2001) Contact mechanics of surfaces with various models of roughness descriptions. Wear 249(7):539–545Google Scholar
  47. 47.
    Zahouani H, Sidoroff F (2001) Rough surfaces and elasto-plastic contacts. C R Acad Sci Ser IV Phys 2(5):709–715Google Scholar
  48. 48.
    Thomas TR (1998) Rough surfaces. World Scientific, SingaporeGoogle Scholar
  49. 49.
    Bora CK, Flater EE, Street MD, Redmond JM, Starr MJ, Carpick RW, Plesha ME (2005) Multiscale roughness and modeling of MEMS interfaces. Tribol Lett 19(1):37–48Google Scholar
  50. 50.
    Persson BNJ (2006) Contact mechanics for randomly rough surfaces. Surf Sci Rep 61(4):201–227ADSGoogle Scholar
  51. 51.
    Miller M, Bobko C, Vandamme M, Ulm F-J (2008) Surface roughness criteria for cement paste nanoindentation. Cem Concr Res 38(4):467–476Google Scholar
  52. 52.
    Bayesteh H, Mohammadi S (2017) Micro-based enriched multiscale homogenization method for analysis of heterogeneous materials. Int J Solids Struct 125:22–42Google Scholar
  53. 53.
    Dehaghani PF, Ardakani SH, Bayesteh H, Mohammadi S (2017) 3D hierarchical multiscale analysis of heterogeneous SMA based materials. Int J Solids Struct 118:24–40Google Scholar
  54. 54.
    Eftekhari M, Ardakani SH, Mohammadi S (2014) An XFEM multiscale approach for fracture analysis of carbon nanotube reinforced concrete. Theor Appl Fract Mech 72:64–75Google Scholar
  55. 55.
    Tadmor EB, Ortiz M, Phillips R (1996) Quasicontinuum analysis of defects in solids. Philos Mag A 73(6):1529–1563ADSGoogle Scholar
  56. 56.
    Shenoy V, Shenoy V, Phillips R (1998) Finite temperature quasicontinuum methods. In: MRS online proceedings library archive, vol 538Google Scholar
  57. 57.
    ISO standard 4287 (1997) International Organization for StandardizationGoogle Scholar
  58. 58.
    Berke P, Massart TJ (2011) Coupled friction and roughness surface effects in shallow spherical nanoindentation. In: Zavarise G, Wriggers P (eds) Trends in computational contact mechanics. Springer, Berlin, pp 269–289Google Scholar
  59. 59.
    Li J, Ni Y, Wang H, Mei J (2010) Effects of crystalline anisotropy and indenter size on nanoindentation by multiscale simulation. Nanoscale Res Lett 5(2):420ADSGoogle Scholar
  60. 60.
    Foiles S, Baskes M, Daw M (1986) Embedded-atom-method functions for the FCC metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys Rev B 33(12):7983ADSGoogle Scholar
  61. 61.
    Fian A, Leisch M (2003) Study on tip–substrate interactions by STM and APFIM. Ultramicroscopy 95:189–197Google Scholar
  62. 62.
    Hagelaar JHA, Bitzek E, Flipse CFJ, Gumbsch P (2006) Atomistic simulations of the formation and destruction of nanoindentation contacts in tungsten. Phys Rev B 73(4):045425ADSGoogle Scholar
  63. 63.
    Trouwborst ML, Huisman EH, Bakker FL, van der Molen SJ, van Wees BJ (2008) Single atom adhesion in optimized gold nanojunctions. Phys Rev Lett 100(17):175502ADSGoogle Scholar
  64. 64.
    Minor AM, Asif SS, Shan Z, Stach EA, Cyrankowski E, Wyrobek TJ, Warren OL (2006) A new view of the onset of plasticity during the nanoindentation of aluminium. Nat Mater 5(9):697–702ADSGoogle Scholar
  65. 65.
    Bobji M, Shivakumar K, Alehossein H, Venkateshwarlu V, Biswas S (1999) Influence of surface roughness on the scatter in hardness measurements—a numerical study. Int J Rock Mech Min Sci 36(3):399–404Google Scholar
  66. 66.
    Picu RC (2000) Atomistic-continuum simulation of nano-indentation in molybdenum. J Comput Aided Mater Des 7(2):77–87ADSGoogle Scholar
  67. 67.
    Medina S, Dini D (2014) A numerical model for the deterministic analysis of adhesive rough contacts down to the nano-scale. Int J Solids Struct 51(14):2620–2632Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Hesam Moslemzadeh
    • 1
  • Omid Alizadeh
    • 1
  • Soheil Mohammadi
    • 1
    Email author
  1. 1.High Performance Computing Laboratory, School of Civil Engineering, Faculty of EngineeringUniversity of TehranTehranIran

Personalised recommendations