Skip to main content
Log in

Prediction of in-plane elastic properties of graphene in the framework of first strain gradient theory

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In the present study, the in-plane elastic stiffness coefficients of graphene within the framework of first strain gradient theory are calculated on the basis of an accurate molecular mechanics model. To this end, a Wigner–Seitz primitive cell is adopted. Additionally, the first strain gradient theory for graphene with trigonal crystal system is formulated and the relation between elastic stiffness coefficients and molecular mechanics parameters are calculated. Thus, the ongoing research challenge on providing the accurate mechanical properties of graphene is addressed herein. Using results obtained, the in-plane free vibration of graphene is studied and a detailed numerical investigation is implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mindlin RD (1964) Micro-structure in linear elasticity. Arch Ration Mech Anal 16(1):51–78

    Article  MathSciNet  MATH  Google Scholar 

  2. Mindlin RD, Eshel NN (1968) On first strain-gradient theories in linear elasticity. Int J Solids Struct 4(1):109–124

    Article  MATH  Google Scholar 

  3. Ramezani S (2012) A shear deformation micro-plate model based on the most general form of strain gradient elasticity. Int J Mech Sci 57(1):34–42

    Article  Google Scholar 

  4. Shodja HM, Zaheri A, Tehranchi A (2013) Ab initio calculations of characteristic lengths of crystalline materials in first strain gradient elasticity. Mech Mater 61:73–78

    Article  Google Scholar 

  5. Lazopoulos KA (2004) On the gradient strain elasticity theory of plates. Eur J Mech A Solids 23(5):843–852

    Article  MathSciNet  MATH  Google Scholar 

  6. Auffray N, Le Quang H, He QC (2013) Matrix representations for 3D strain-gradient elasticity. J Mech Phys Solids 61(5):1202–1223

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Ansari R, Shahabodini A, Rouhi H (2013) Prediction of the biaxial buckling and vibration behavior of graphene via a nonlocal atomistic-based plate theory. Compos Struct 95:88–94

    Article  Google Scholar 

  8. Liew KM, He XQ, Kitipornchai S (2006) Predicting nanovibration of multi-layered graphene sheets embedded in an elastic matrix. Acta Mater 54(16):4229–4236

    Article  Google Scholar 

  9. Nazemnezhad R, Kamali K, Hosseini-Hashemi S (2017) Study on tensile-compressive and shear effects of van der Waals interactions on free vibration of bilayer graphene nanoribbons. Meccanica 52(1–2):263–282

    Article  MathSciNet  Google Scholar 

  10. Favata A, Micheletti A, Podio-Guidugli P, Pugno NM (2017) How graphene flexes and stretches under concomitant bending couples and tractions. Meccanica 52(7):1601–1624

    Article  MathSciNet  MATH  Google Scholar 

  11. Genoese A, Genoese A, Rizzi NL, Salerno G (2017) On the derivation of the elastic properties of lattice nanostructures: the case of graphene sheets. Compos Part B Eng 115:316–329

    Article  Google Scholar 

  12. Zhang LW, Zhang Y, Liew KM (2017) Vibration analysis of quadrilateral graphene sheets subjected to an in-plane magnetic field based on nonlocal elasticity theory. Compos Part B Eng 118:96–103

    Article  Google Scholar 

  13. Wang J, He X, Kitipornchai S, Zhang H (2011) Geometrical nonlinear free vibration of multi-layered graphene sheets. J Phys D Appl Phys 44(13):135401

    Article  ADS  Google Scholar 

  14. Rahmanian M, Torkaman-Asadi MA, Firouz-Abadi RD, Kouchakzadeh MA (2016) Free vibrations analysis of carbon nanotubes resting on Winkler foundations based on nonlocal models. Physica B Condens Matter 484:83–94

    Article  ADS  Google Scholar 

  15. Firouz-Abadi RD, Fotouhi MM, Haddadpour H (2012) Stability analysis of nanocones under external pressure and axial compression using a nonlocal shell model. Physica E Low Dimens Syst Nanostruct 44(9):1832–1837

    Article  ADS  Google Scholar 

  16. Beni YT, Mehralian F, Razavi H (2015) Free vibration analysis of size-dependent shear deformable functionally graded cylindrical shell on the basis of modified couple stress theory. Compos Struct 120:65–78

    Article  Google Scholar 

  17. Mehralian F, Beni YT, Ansari R (2016) On the size dependent buckling of anisotropic piezoelectric cylindrical shells under combined axial compression and lateral pressure. Int J Mech Sci 119:155–169

    Article  Google Scholar 

  18. Gholami R, Darvizeh A, Ansari R, Hosseinzadeh M (2014) Size-dependent axial buckling analysis of functionally graded circular cylindrical microshells based on the modified strain gradient elasticity theory. Meccanica 49(7):1679–1695

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhang L, Liang B, Zhou S, Wang B, Xue Y (2017) An application of a size-dependent model on microplate with elastic medium based on strain gradient elasticity theory. Meccanica 52(1–2):251–262

    Article  MathSciNet  MATH  Google Scholar 

  20. Ansari R, Mirnezhad M, Sahmani S (2013) An accurate molecular mechanics model for computation of size-dependent elastic properties of armchair and zigzag single-walled carbon nanotubes. Meccanica 48(6):1355–1367

    Article  MathSciNet  MATH  Google Scholar 

  21. Andrew RL (2001) Molecular Modeling Principles and Applications, 2nd edn. Pearson Education Limited, London

    Google Scholar 

  22. Arghavan S (2012) Vibration of carbon nano-structures. Thesis of The University of Western Ontario

  23. Li C, Chou TW (2003) A structural mechanics approach for the analysis of carbon nanotubes. Int J Solids Struct 40(10):2487–2499

    Article  MATH  Google Scholar 

  24. Yazdchi K, Salehi M, Shokrieh MM (2008) Effective structural parameters of single–walled carbon nanotubes. Eur Soc Compos Mater pp 1–10

  25. Shokrieh MM, Rafiee R (2010) Prediction of Young’s modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach. Mater Des 31(2):790–795

    Article  Google Scholar 

  26. Kelly BT (1981) Physics of graphite

  27. Kudin KN, Scuseria GE, Yakobson BI (2001) C\(_{2}\)F, BN, and C nanoshell elasticity from ab initio computations. Phys Rev B 64(23):235406

    Article  ADS  Google Scholar 

  28. GRAPHENE (2010) Scientific Background on the Nobel Prize in Physics

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. D. Firouz-Abadi.

Ethics declarations

Conflict of interest

There is no conflict of interest regarding the publication of this article.

Appendix

Appendix

$$\begin{aligned} \pmb {\mathrm {A^{(11)}}}=\left[ \begin{array}{ccccc} a_{11} &{} a_{12} &{} a_{13} &{} a_{14} &{} a_{15}\\ &{} a_{22} &{} -a_{13}+\sqrt{2}\,a_3 &{} a_1 &{} a_2\\ &{} &{} -a_{12}+a^*_3 &{} a_{34} &{} a_{35}\\ &{} &{} &{} a_{44} &{} a_{45}\\ &{} &{} &{} &{} a_{55} \end{array}\right] \end{aligned}$$
(54)

with

$$\begin{aligned}&a_1=a_{14}-\sqrt{2}\,a_{34},\, a_2=a_{15}-\sqrt{2}\,a_{35}, \, a_3=\frac{a_{11}-a_{22}}{2}, \, a^*_3=\frac{a_{11}+a_{22}}{2}\nonumber \\&\pmb {\mathrm {A_c}}=\left[ \begin{array}{ccccc} 1 &{} -1 &{} -\sqrt{2} &{} 0 &{} 0\\ &{} 1 &{} \sqrt{2} &{} 0 &{} 0\\ &{} &{} 2 &{} 0 &{} 0\\ &{} &{} &{} 0 &{} 0\\ &{} &{} &{} 0 &{} 0 \end{array}\right] \end{aligned}$$
(55)
$$\begin{aligned}&\pmb {\mathrm {D^{(4)}}}=\begin{bmatrix} d_{11}&d_{12}&-d_{12}\\ d_{11}&-d_{12}&d_{12}\\ 0&-\sqrt{2}\,d_{12}&\sqrt{2}\,d_{12}\\ d_{41}&0&0\\ d_{51}&0&0 \end{bmatrix} \end{aligned}$$
(56)
$$\begin{aligned}&\pmb {\mathrm {F^{(8)}}}=\begin{bmatrix} f_{11}&f_{12}&f_{13}&f_{14}&f_{15}\\ -f_{11}&-f_{12}+\beta _1&f_{23}&-f_{12}+\beta _1&-f_{15}-2\beta _2\\ -\sqrt{2}\,f_{11}&-\sqrt{2}\,(f_{12}-\frac{3\beta _1}{2})&-\sqrt{2}\,(f_{15}+\beta _2)&-\sqrt{2}\,(f_{12}-\frac{\beta _1}{2})&-\sqrt{2}\,(f_{13}-\beta _2)\\ 0&0&f_{43}&0&-f_{43}\\ 0&0&f_{53}&0&-f_{53} \end{bmatrix} \end{aligned}$$
(57)
$$\begin{aligned}&\pmb {\mathrm {H^{(6)}}}=\left[ \begin{array}{ccccc} h_{11}&{} h_{12} &{} h_{13} &{} h_{12} &{} h_{13} \\ &{} h_{22} &{} h_{23} &{} h_{22} &{} h_{23}\\ &{} &{} h_{33} &{} h_{23} &{} h_{33}\\ &{} &{} &{} h_{22} &{} h_{23}\\ &{} &{} &{} &{} h_{33} \end{array}\right] \end{aligned}$$
(58)
$$\begin{aligned}&\pmb {\mathrm {J^{(4)}}}=\left[ \begin{array}{ccccc} j_{11} &{} j_{12} &{} j_{12}\\ &{} j_{22} &{} j_{23}\\ &{} &{} j_{22} \end{array}\right] \end{aligned}$$
(59)
$$\begin{aligned}&\pmb {\mathrm {f(F^{(8)})}}=\begin{bmatrix} \sqrt{2}\,\alpha&\beta _2&-2\beta _3-\beta _2\\ 0&\beta _2&3\beta _2-2\beta _3\\ \alpha&-2\sqrt{2}\,(\beta _2-\beta _3)&0 \\ 0&f_{43}&f_{43} \\ 0&f_{53}&f_{53} \end{bmatrix} \end{aligned}$$
(60)
$$\begin{aligned}&\pmb {\mathrm {f(D^{(4)})}}=\begin{bmatrix} 0&\frac{\sqrt{2}}{2}\,d_{11}&0&-\frac{\sqrt{2}}{2}\,d_{11}&0\\ 0&\frac{\sqrt{2}}{2}\,d_{11}&0&-\frac{\sqrt{2}}{2}\,d_{11}&0\\ 0&0&0&0&0\\ 0&\frac{\sqrt{2}}{2}\,d_{41}&0&-\frac{\sqrt{2}}{2}\,d_{41}&0\\ 0&\frac{\sqrt{2}}{2}\,d_{51}&0&-\frac{\sqrt{2}}{2}\,d_{51}&0 \end{bmatrix} \end{aligned}$$
(61)
$$\begin{aligned}&\pmb {\mathrm {f(J^{(4)})}}=\left[ \begin{array}{ccccc} 0 &{} 0 &{} 0 &{} 0 &{} 0\\ &{} 0 &{} 0 &{} -j_{11} &{} -\sqrt{2}\,j_{12}\\ &{} &{} 0 &{} -\sqrt{2}\,j_{12} &{} -(j_{22}+j_{23})\\ &{} &{} &{} 0 &{} 0\\ &{} &{} &{} &{} 0 \end{array}\right] \end{aligned}$$
(62)

with

$$\begin{aligned} \beta _1=\frac{f_{12}-f_{14}}{2},\,\beta _2=\frac{f_{13}+f_{23}}{2},\,\beta _3=\frac{f_{13}-f_{15}}{2} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassanpour, S., Mehralian, F., Firouz-Abadi, R.D. et al. Prediction of in-plane elastic properties of graphene in the framework of first strain gradient theory. Meccanica 54, 299–310 (2019). https://doi.org/10.1007/s11012-019-00947-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-019-00947-y

Keywords

Navigation