Advertisement

Meccanica

, Volume 54, Issue 1–2, pp 155–167 | Cite as

Wave equation in fractional Zener-type viscoelastic media involving Caputo–Fabrizio fractional derivatives

  • Teodor M. AtanackovićEmail author
  • Marko Janev
  • Stevan Pilipović
Article
  • 80 Downloads

Abstract

We investigate propagation of waves in the Zener-type viscoelastic media through a model which involves fractional derivatives with a regular kernel. The restrictions on the coefficients in the constitutive equation that follow from the weak form of the dissipation principle are obtained. We formulate a problem of motion of a spatially one dimensional continuum in a dimensionless form. Then, it is considered in the frame of distribution theory. The existence and the uniqueness of a distributional solution as well as the analysis of its regularity are presented. Numerical results provide the illustration of our approach.

Keywords

Waves Zener model Caputo–Fabrizio derivative 

Notes

Acknowledgements

This research was supported by the Serbian Academy of Sciences and Arts (TMA) and Serbian Ministry of Science Grants TR32035, III44003 (MJ) and 174024 (SP).

References

  1. 1.
    Atanackovic TM, Pilipovic S, Zorica D (2018) Properties of the Caputo–Fabrizio fractional derivative and its distributional settings. Fract Calc Appl Anal 21:29–44MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bagley RL, Torvik PJ (1986) On the fractional calculus model of viscoelastic behavior. J Rheol 30(1):133–155ADSCrossRefzbMATHGoogle Scholar
  3. 3.
    Caputo M, Mainardi F (1971) A new dissipation model based on memory mechanism. Pure Appl Geophys 91:134–147.  https://doi.org/10.1007/BF00879562 ADSCrossRefzbMATHGoogle Scholar
  4. 4.
    Cuahutenango-Barro B, Taneco-Hernández MA, Gómez-Aguilar JF (2017) Application of fractional derivative with exponential law to bi-fractional-order wave equation with frictional memory Kernel. Eur Phys J Plus 132:515.  https://doi.org/10.1140/epjp/i2017-11796-9 CrossRefGoogle Scholar
  5. 5.
    Caputo M, Fabrizio M (2015) A new definition of fractional derivative without singular Kernel. Prog Fract Differ Appl 1(2):73–85Google Scholar
  6. 6.
    Caputo M, Fabrizio M (2015) Properties of a new fractional derivative without singular Kernel. Progr Fract Differ Appl 1(2):87–92Google Scholar
  7. 7.
    Caputo M, Fabrizio M (2017) On the notion of fractional derivative and applications to the hysteresis phenomena. Meccanica.  https://doi.org/10.1007/s11012-017-0652-y
  8. 8.
    El-Karamany AS, Ezzat MA (2011) On fractional thermoelasticity. Math Mech Solids 16:334–346MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    El-Karamany AS, Ezzat MA (2015) Two-temperature Green–Naghdi theory of type III in linear thermoviscoelastic anisotropic solid. Appl Math Modell 39:2155–2171MathSciNetCrossRefGoogle Scholar
  10. 10.
    El-Karamany AS, Ezzat MA (2011) Convolutional variational principle, reciprocal and uniqueness theorems in linear fractional two-temperature thermoelasticity. J Therm Stresses 34:264–284CrossRefGoogle Scholar
  11. 11.
    Eringen AC (2002) Nonlocal continuum field theories. Springer, New YorkzbMATHGoogle Scholar
  12. 12.
    Enelund M, Mähler L, Runesson K, Lennart Josefson B (1999) Formulation and integration of the standard linear viscoelastic solid with fractional order rate laws. Int J Solids Struct 36:2417–2442CrossRefzbMATHGoogle Scholar
  13. 13.
    Ezzat MA, El-Bary AA (2016) Unified fractional derivative models of magneto-thermo-viscoelasticity theory. Arch Mech 68:285–308MathSciNetzbMATHGoogle Scholar
  14. 14.
    Fabrizio M, Lazzari B, Nibbi R (2017) Existence and stability for a visco-plastic material with a fractional constitutive equation. Math Meth Appl Sci 40:6306–6315MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Fernndez-Saez J, Zaeraa R, Loya JA, Reddy JN (2016) Bending of Euler–Bernoulli beams using Eringen’s integral formulation: a paradox resolved. Int J Eng Sci 99:107–116MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hristov J (2017) Derivatives with non-singular Kernels from the Caputo–Fabrizio definition and beyond: appraising analysis with emphasis on diffusion models. Front Fract Calc 1:270–342Google Scholar
  17. 17.
    Kochubei AN (2011) General fractional calculus, evolution equations, and renewal processes. Integr Equ Oper Theory 71:583–600MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Mainardi F (2010) Fractional calculus and waves in linear viscoelasticity. Imperial College Press-World Scientific, LondonCrossRefzbMATHGoogle Scholar
  19. 19.
    Mainardi F, Spada G (2011) Creep, relaxation and viscosity properties for basic fractional models in rheology. Eur Phys J Spec Top 193:133–160CrossRefGoogle Scholar
  20. 20.
    Ortigueira MD, Tenreiro Machado JA (2015) What is fractional derivative? J Comput Phys 293:4–13ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Ortigueira MD, Tenreiro Machado JA (2018) A critical analysis of the Caputo–Fabrizio operator. Commun Nonlinear Sci Numer Simul 59:608–611ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Pallu De LA Barriere R (1980) Optimal control theory: a course in automatic control theory. Dower Publications Inc, New YorkzbMATHGoogle Scholar
  23. 23.
    Reed M, Simon B (1980) Methods of modern mathematical physics, I: functional anaalysis. Academic Press, New YorkGoogle Scholar
  24. 24.
    Ross B (1975) A brief history and exposition of the fundamental theory of fractional calculus. In: Ross B (ed) Fractional calculus and its applications. Lecture notes in mathematics. Springer, Berlin, pp 1–36CrossRefGoogle Scholar
  25. 25.
    Sherief HH, El-Sayed AMA, Abd El-Latief AM (2010) Fractional order theory of thermoelasticity. Int J Solids Struct 47:269–275CrossRefzbMATHGoogle Scholar
  26. 26.
    Stankovic B, Atanackovic TM (2004) On an inequality arising in fractional oscillator theory. Fract Calc Appl Anal 7:11–20MathSciNetzbMATHGoogle Scholar
  27. 27.
    Tarasov VE (2018) No nonlocality. No fractional derivative. Commun Nonlinear Sci Numer Simul 62:157–163ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Vladimirov VS (1979) Generalized functions in mathematical physics. Mir Publishers, MoscowzbMATHGoogle Scholar
  29. 29.
    von Ende S, Lion A, Lammering L (2011) On the thermodynamically consistent fractional wave equation for viscoelastic solids. Acta Mech 221:1–10CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Teodor M. Atanacković
    • 1
    Email author
  • Marko Janev
    • 2
  • Stevan Pilipović
    • 3
  1. 1.Serbian Academy of Arts and SciencesBelgradeSerbia
  2. 2.Institute of MathematicsSerbian Academy of Sciences and ArtsBelgradeSerbia
  3. 3.Department of Mathematics and Informatics, Faculty of SciencesUniversity of Novi SadNovi SadSerbia

Personalised recommendations