Skip to main content
Log in

Dynamics of solid propellant motor composite casing under impact pressure

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

A dynamic behavior of solid propellant motor composite casing under the action of an internal impact pressure is treated. This pressure describes the engine operation. The thin-walled casing consists of the cylindrical shell and two bottoms. These bottoms are truncated hemisphere. The casing is clamped along two edges of the bottoms. A shear, a rotary inertia and stress–strain relations for an orthotropic material are accounted. Semi analytical method is suggested to analyze the structure stress–strain state. The thin-walled casing dynamic is described by large dimension system of the ordinary differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Poe CC (1992) Impact damage and residual tension strength of a thick graphite/epoxy rocket motor case. J Spacecr Rockets 29:394–404

    Article  ADS  Google Scholar 

  2. Renganathan K, Rao BN, Jana MK (1999) Failure pressure estimations on a solid propellant rocket motor with a circular perforated grain. Int J Press Vessels Pip 76:955–963

    Article  Google Scholar 

  3. Montesano J, Behdinan K, Greatrix DR, Fawaz Z (2008) Internal chamber modeling of a solid rocket motor: Effects of coupled structural and acoustic oscillations on combustion. J Sound Vib 311:20–38

    Article  ADS  Google Scholar 

  4. Yldirim HC, Ozupek S (2011) Structural assessment of a solid propellant rocket motor: Effects of aging and damage. Aerosp Sci Technol 15:635–641

    Article  Google Scholar 

  5. Chen JT, Leu SY (1998) Finite element analysis, design and experiment on solid propellant motors with a stress reliever. Finite Elem Anal Des 29:75–86

    Article  MATH  Google Scholar 

  6. Heller RA, Kamat MP, Singh MP (1979) Probability of solid-propellant motor failure due to environmental temperatures. J Spacecr Rockets 16:140–146

    Article  ADS  Google Scholar 

  7. Heller RA, Singh MP (1983) Thermal storage life of solid-propellant motors. J Spacecr Rockets 20:144–149

    Article  ADS  Google Scholar 

  8. Chyuan SW (2003) Dynamic analysis of solid propellant grains subjected to ignition pressurization loading. J Sound Vib 268:465–483

    Article  ADS  Google Scholar 

  9. Marimuthu R, Rao BN (2013) Development of efficient finite elements for structural integrity analysis of solid rocket motor propellant grains. Int J Press Vessels Pip 111:131–145

    Article  Google Scholar 

  10. Qu K, Zhan X (2013) Finite element analysis of propellant of solid rocket motor during ship motion. Propuls Power Res 2:50–55

    Article  Google Scholar 

  11. Yang L, Wang N, Xie K, Su X, Li S (2016) Influence of strain rate on the compressive yield stress of CMDB propellant at low, intermediate and high strain rates. Polym Test 51:49–57

    Article  Google Scholar 

  12. Kalaycioglu B, Dirikolu MH, Celik V (2010) An elasto-viscoplastic analysis of direct extrusion of a double base solid propellant. Adv Eng Softw 41(9):1110–1114

    Article  MATH  Google Scholar 

  13. Su W, Wang N, Li J, Zhao Y, Yan M (2014) Improved method of measuring pressure coupled response for composite solid propellants. J Sound Vib 333:2226–2240

    Article  ADS  Google Scholar 

  14. Li Q, Liu P, He G (2015) Fluid–solid coupled simulation of the ignition transient of solid rocket motor. Acta Astronaut 110:180–190

    Article  ADS  Google Scholar 

  15. Dobyns AL (1981) Analysis of simply-supported orthotropic plates subject to static and dynamic loads. AIAA J 19:642–650

    Article  ADS  MATH  Google Scholar 

  16. Baharlou B, Leissa AW (1987) Vibration and buckling of generally laminated composite plates with arbitrary edge conditions. Int J Mech Sci 29:545–555

    Article  MATH  Google Scholar 

  17. Bert CW, Kumar M (1982) Vibration of cylindrical shells of bimodulus composite materials. J Sound Vib 81:107–121

    Article  ADS  MATH  Google Scholar 

  18. Reddy JN, Liu CF (1985) A higher-order shear deformation theory of laminated elastic shells. Int J Eng Sci 23:319–330

    Article  MATH  Google Scholar 

  19. Soedel W (1983) Simplified equations and solutions for the variation of orthotropic cylindrical shells. J Sound Vib 97:226–242

    MATH  Google Scholar 

  20. Bhaskar K, Varadan TK (1991) A higher-order theory for bending analysis of laminated shells of revolution. Compos Struct 40:815–819

    Article  MATH  Google Scholar 

  21. Reddy JN, Khdeir AA (1989) Buckling and vibration of laminated composite plates using various plate theories. AIAA J 27:1808–1817

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Dey A, Bandyopadhyay JN, Sinha PK (1992) Finite element analysis of laminated composite paraboloid of revolution shells. Compos Struct 44:675–682

    Article  ADS  Google Scholar 

  23. Cho M, Parmerter RR (1993) Efficient higher order composite plate theory for general lamination configurations. AIAA J 31:1299–1306

    Article  ADS  MATH  Google Scholar 

  24. Hufenbach W, Holste C, Kroll L (2002) Vibration and damping behaviour of multi-layered composite cylindrical shells. Compos Struct 58:165–174

    Article  Google Scholar 

  25. Xi ZC, Yam LH, Leung TP (1999) Free vibration of a laminated composite shell of revolution: Effects of shear non-linearity. Int J Mech Sci 41:649–661

    Article  MATH  Google Scholar 

  26. Qu Y, Long X, Wu S, Meng G (2013) A unified formulation for vibration analysis of composite laminated shells of revolution including shear deformation and rotary inertia. Compos Struct 98:169–191

    Article  Google Scholar 

  27. Bert CW, Egle DM (1969) Dynamics of composite, sandwich and stiffened shell- type structures. J Spacecr Rockets 6:1345–1361

    Article  ADS  Google Scholar 

  28. Toorani MH, Lakis AA (2000) General equations of anisotropic plates and shells including transverse shear deformations, rotary inertia and initial curvature effects. J Sound Vib 237:561–615

    Article  ADS  Google Scholar 

  29. Bathe KJ, Wilson EL (1976) Numerical methods in finite element analysis. Printice Hall, Englewood Cliffs

    MATH  Google Scholar 

  30. Chernobryvko M, Avramov K, Kruszka L, Tonkonogenko A (2016) Dynamics of Thin-Walled Elements of Rocket Engine under Impact Loads. Key Eng Mater 715:237–242

    Article  Google Scholar 

  31. Avramov K, Strel’nikova E, Chernobryvko M, Gnit’ko V (2015) Methods and software of dynamic stress–strain state of the shell under the action of high rate impact loads. A.N. Podgorny Institute for Mechanical Engineering Problems, Kharkov, Ukraine, Contract No. 1058-14 with Yangel Yuzhnoye State Design Office (in Russian)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Avramov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix: Parameters of the dynamical systems (26)

Appendix: Parameters of the dynamical systems (26)

$$ \begin{aligned} K_{1} & = - \frac{{E_{xx} }}{{\rho \left( {1 - \mu_{x\varphi } \mu_{\varphi x} } \right)}}, \\ K_{2} & = \frac{{G_{x\varphi } }}{{\rho R^{2} }}, \, \\ K_{3} & = - \frac{1}{\rho R}\left( {\frac{{\mu_{x\varphi } E_{xx} }}{{1 - \mu_{x\varphi } \mu_{\varphi x} }} + G_{x\varphi } } \right), \, \\ K_{4} & = - \frac{{\mu_{x\varphi } E_{xx} }}{{\rho R\left( {1 - \mu_{x\varphi } \mu_{\varphi x} } \right)}}, \\ K_{5} & = - \frac{{G_{x\varphi } }}{\rho }, \\ K_{6} & = \frac{{E_{\varphi \varphi } }}{{\rho R^{2} \left( {1 - \mu_{x\varphi } \mu_{\varphi x} } \right)}}, \\ K_{7} & = \frac{{\kappa G_{\varphi z} }}{{\rho R^{2} }}, \\ K_{8}^{{}} & = - \frac{{E_{\varphi \varphi } }}{{\rho R^{2} \left( {1 - \mu_{x\varphi } \mu_{\varphi x} } \right)}}, \\ K_{81} & = \frac{1}{\rho R}\left( {\frac{{\mu_{\varphi x} E_{\varphi \varphi } }}{{R\left( {1 - \mu_{x\varphi } \mu_{\varphi x} } \right)}} + G_{x\varphi } } \right), \\ K_{82} & = \frac{1}{{\rho R^{2} }}\left( {\frac{{E_{\varphi \varphi } }}{{1 - \mu_{x\varphi } \mu_{\varphi x} }} + \kappa G_{\varphi z} } \right), \\ K_{9} & = - \frac{{\kappa G_{\varphi z} }}{\rho R},\quad K_{10} = - \frac{{\kappa G_{xz} }}{\rho },\quad K_{11} = \frac{{\kappa G_{\varphi z} }}{{\rho R^{2} }}, \\ K_{12} & = \frac{{\mu_{\varphi x} E_{\varphi \varphi } }}{{\rho R\left( {1 - \mu_{x\varphi } \mu_{\varphi x} } \right)}},\quad K_{13} = \frac{{12\kappa G_{xz} }}{{\rho h^{2} }},\quad K_{14} = \frac{{12\kappa G_{\varphi z} }}{{\rho h^{2} }},\quad K_{15} = - \frac{{12\kappa G_{\varphi z} }}{{\rho Rh^{2} }}. \\ \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avramov, K.V., Chernobryvko, M.V. & Tonkonozhenko, A.M. Dynamics of solid propellant motor composite casing under impact pressure. Meccanica 53, 3339–3353 (2018). https://doi.org/10.1007/s11012-018-0876-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-018-0876-5

Keywords

Navigation