A dielectrophoretic study of the carbon nanotube chaining process and its dependence on the local electric fields

  • 185 Accesses

  • 1 Citations


The chaining process of a system of interacting carbon nanotubes (CNTs) under an alternating current electric field is investigated at two regions of different electric field characteristics. For the region of uniform electric field (far from the electrodes), a two-dimensional multiparticle approach based on the dielectrophoretic (DEP) theory and classical mechanics is proposed to investigate the CNT rotational and translation motion. For this scenario, CNT rotation and alignment along the electric field direction occurs first, followed by the translation and chaining processes which were found to be highly dependent on the CNT-to-CNT initial configuration. On the other hand, the presence of high electric field gradients governs the CNT chaining at regions near the electrodes. DEP forces caused by such gradients were computed by finite element analysis and compared to the magnitude of the CNT-to-CNT interacting forces at zones of uniform electric fields. A critical distance of CNT-to-CNT separation was estimated, which determines if a CNT is attracted towards the electrode or if it is attracted by other CNTs away from the electrodes. Experimental evidence of CNTs dynamic motion under electric fields is presented to support the predicted trends.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    Aviles F, May-Pat A, Canche-Escamilla G, Rodriguez-Uicab O, Ku-Herrera JJ, Duarte-Aranda S et al (2014) Influence of carbon nanotube on the piezoresistive behavior of multiwall carbon nanotube/polymer composites. J Intell Mater Syst Struct 27:92–103

  2. 2.

    Oliva-Avilés AI, Avilés F, Sosa V, Oliva AI, Gamboa F (2012) Dynamics of carbon nanotube alignment by electric fields. Nanotechnology 23:465710

  3. 3.

    Alamusi HuN, Fukunaga H, Atobe S, Liu Y, Li J (2011) Piezoresistive strain sensors made from carbon nanotubes based polymer nanocomposites. Sensors 11:10691–10723

  4. 4.

    Pantano A, Cappello F (2008) Numerical model for composite material with polymer matrix reinforced by carbon nanotubes. Meccanica 43:263–270

  5. 5.

    Gkikas G, Paipetis AS (2015) Optimisation and analysis of the reinforcement effect of carbon nanotubes in a typical matrix system. Meccanica 50:461–478

  6. 6.

    Čanađija M, Brčić M, Brnić J (2017) Elastic properties of nanocomposite materials: influence of carbon nanotube imperfections and interface bonding. Meccanica 52:1655–1668

  7. 7.

    Ferreira ADBL, Nóvoa PR, Marques AT (2016) Multifunctional material systems: a state-of-the-art review. Compos Struct 151:3–35

  8. 8.

    Siddiqui NA, Sham ML, Tang BZ, Munir A, Kim JK (2009) Tensile strength of glass fibres with carbon nanotube-epoxy nanocomposite coating. Compos Part A Appl S 40:1606–1614

  9. 9.

    Sager RJ, Klein PJ, Lagoudas DC, Zhang Q, Liu J, Dai L, Baur JW (2009) Effect of carbon nanotubes on the interfacial shear strength of T650 carbon fiber in an epoxy matrix. Compos Sci Technol 69:898–904

  10. 10.

    Shi K, Zhitomirsky I (2013) Electrophoretic nanotechnology of graphene-carbon nanotube and graphene-polypyrrole nanofiber composites for electrochemical supercapacitors. J Colloid Interface Sci 407:474–481

  11. 11.

    Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375

  12. 12.

    Pandey G, Thostenson ET (2012) Carbon nanotube-based multifunctional polymer nanocomposites. Polym Rev 52:355–416

  13. 13.

    Kanoun O, Müller C, Benchirouf A, Sanli A, Dinh TN, Al-Hamry A, Bu L, Gerlach C, Bouhamed A (2014) Flexible carbon nanotube films for high performance strain sensors. Sensors 14:10042–10071

  14. 14.

    Ponnamma D, Guo Q, Krupa I, Al-Maadeed MASA, Varughese KT, Thomas S, Sadasivuni KK (2015) Graphene and graphitic derivative filled polymer composites as potential sensors. Phys Chem Chem Phys 17:3954–3981

  15. 15.

    Brown DA, Kim JH, Lee HB, Fotouhi G, Lee KH, Liu WK, Chung JH (2012) Electric field guided assembly of one-dimensional nanostructures for high performance sensors. Sensors 12:5725–5751

  16. 16.

    Yamamoto K, Akita S, Nakayama Y (1996) Orientation of carbon nanotubes using electrophoresis. Jpn J Appl Phys 35:L917–L918

  17. 17.

    Yamamoto K, Akita S, Nakayama Y (1998) Orientation and purification of carbon nanotubes using ac electrophoresis. J Phys D Appl Phys 31:L34–L36

  18. 18.

    Martin CA, Sandler JKW, Shaffer MSP, Schwarz MK, Bauhofer W, Schulte K, Windle AH (2004) Formation of percolating networks in multi-wall carbon-nanotube–epoxy composites. Compos Sci Technol 64:2309–2316

  19. 19.

    Monti M, Natali M, Torre L, Kenny JM (2012) The alignment of single walled carbon nanotubes in an epoxy resin by applying a DC electric field. Carbon 50:2453–2464

  20. 20.

    Zhu YF, Ma C, Zhang W, Zhang RP, Koratkar N, Liang J (2009) Alignment of multiwalled carbon nanotubes in bulk epoxy composites via electric field. J Appl Phys 105:054319

  21. 21.

    Lu Y, Chen C, Liu Y, Zhang Y (2009) Theoretical simulation on the assembly of carbon nanotubes between electrodes by AC dielectrophoresis. Nanoscale Res Lett 4:157–164

  22. 22.

    Chen Z, Yang Y, Chen F, Qing Q, Wu Z, Liu Z (2005) Controllable interconnection of single-walled carbon nanotubes under AC electric field. J Phys Chem B 109:11420–11423

  23. 23.

    Oliva-Avilés AI, Avilés F, Sosa V, Seidel GD (2014) Dielectrophoretic modeling of the dynamic carbon nanotube network formation in viscous media under alternating current electric fields. Carbon 69:342–354

  24. 24.

    Wei Y, Wei W, Liu L, Fan S (2008) Mounting multi-walled carbon nanotubes on probes by dielectrophoresis. Diam Relat Mater 17:1877–1880

  25. 25.

    Murugesh AK, Uthayanan A, Lekakou C (2010) Electrophoresis and orientation of multiple wall carbon nanotubes in polymer solution. Appl Phys A 100:135–144

  26. 26.

    Baik S, Usrey M, Rotkina L, Strano M (2004) Using the selective functionalization of metallic single-walled carbon nanotubes to control dielectrophoretic mobility. J Phys Chem B 108:15560–15564

  27. 27.

    Wu S, Ladani RB, Zhang J, Bafekrpour E, Ghorbani K, Mouritz AP, Kinloch AJ, Wang CH (2015) Aligning multilayer graphene flakes with an external electric field to improve multifunctional properties of epoxy nanocomposites. Carbon 94:607–618

  28. 28.

    Ma SJ, Guo WL (2008) Mechanism of carbon nanotubes aligning along applied electric field. Chin Phys Lett 25:270–273

  29. 29.

    Mostafa M, Banerjee S (2014) Predictive model for alignment and deposition of functionalized nanotubes using applied electric field. J Appl Phys 115:244309

  30. 30.

    Farajian AA, Pupysheva OV, Schmidt HK, Yakobson BI (2008) Polarization, energetics, and electrorheology in carbon nanotube suspensions under an applied electric field: an exact numerical approach. Phys Rev B 77:205432

  31. 31.

    Oliva-Avilés AI, Zozulya VV, Gamboa F, Avilés F (2016) Dynamic evolution of interacting carbon nanotubes suspended in a fluid using a dielectrophoretic framework. Physica E 83:7–21

  32. 32.

    Pohl HA (1978) Dielectrophoresis. Cambridge University Press, Cambridge

  33. 33.

    Morgan H, Green NG (2003) AC electrokinetics: colloids and nanoparticles. Research Studies Press LTD, Baldock

  34. 34.

    Jones TB (1995) Electromechanics of particles. Cambridge University Press, Cambridge

  35. 35.

    Abadi PPSS, Maschmann MR, Mortuza SM, Banerjee S, Baur JW, Graham S, Cola BA (2014) Reversible tailoring of mechanical properties of carbon nanotube forests by immersing in solvents. Carbon 69:178–187

  36. 36.

    Rajter RF, French RH, Ching WY, Carter WC, Chiang YM (2007) Calculating van der Waals-London dispersion spectra and Hamaker coefficients of carbon nanotubes in water from ab initio optical properties. J Appl Phys 101:054303

  37. 37.

    An L, Friedrich CR (2009) Process parameters and their relations for the dielectrophoretic assembly of carbon nanotubes. J Appl Phys 105:074314

  38. 38.

    Kim JE, Han CS (2005) Use of dielectrophoresis in the fabrication of an atomic force microscope tip with a carbon nanotube: a numerical analysis. Nanotechnology 16:2245

  39. 39.

    Volkov AN, Zhigilei LV (2010) Mesoscopic interaction potential for carbon nanotubes of arbitrary length and orientation. J Phys Chem C 114:5513–5531

  40. 40.

    Girifalco LA, Hodak M, Lee RS (2000) Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Phys Rev B 62:13104–13110

  41. 41.

    Li C, Chou TW (2003) Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces. Compos Sci Technol 63:1517–1524

  42. 42.

    Kumar MS, Kim TH, Lee SH, Song SM, Yang JW, Nahm KS, Suh EK (2004) Influence of electric field type on the assembly of single walled carbon nanotubes. Chem Phys Lett 383:235–239

  43. 43.

    Sengezer EC, Seidel GD, Bodnar RJ (2015) Phenomenological characterization of fabrication of aligned pristine-SWNT and COOH-SWNT nanocomposites via dielectrophoresis under AC electric field. Polym Compos 36:1266–1279

  44. 44.

    Li J, Zhang Q, Peng N, Zhu Q (2005) Manipulation of carbon nanotubes using AC dielectrophoresis. Appl Phys Lett 86:153116

  45. 45.

    Knite M, Linarts A, Ozols K, Tupureina V, Stalte I, Lapcinskis L (2017) A study of electric field-induced conductive aligned network formation in high structure carbon black/silicone oil fluids. Colloids Surf A 526:8–13

  46. 46.

    Papadakis SJ, Hoffmann JA, Deglau D, Chen A, Tyagi P, Gracias DH (2011) Quantitative analysis of parallel nanowire array assembly by dielectrophoresis. Nanoscale 3:1059–1065

  47. 47.

    Yang X, Zhu Y, Ji L, Zhang C, Liang J (2007) Influence of AC electric field on macroscopic network of carbon nanotubes in polystyrene. J Dispers Sci Technol 28:1164–1168

  48. 48.

    Sam M, Moghimian N, Bhiladvala RB (2016) Field-directed chaining of nanowires: towards transparent electrodes. Mater Lett 163:205–208

  49. 49.

    An L, Friedrich CR (2008) Real-time gap impedance monitoring of dielectrophoretic assembly of multiwalled carbon nanotubes. Appl Phys Lett 92:173103

  50. 50.

    Liu X, Spencer JL, Kaiser AB, Arnold WM (2004) Electric-field oriented carbon nanotubes in different dielectric solvents. Curr Appl Phys 4:125–128

  51. 51.

    Suehiro J, Zhou G, Imakiire H, Ding W, Hara M (2005) Electric-field oriented carbon nanotubes in different dielectric solvents. Sens Actuators B 108:398–403

  52. 52.

    Perrin F (1934) Mouvement brownien d’un ellipsoide—I. Dispersion diélectrique pour des molécules ellipsoidales. J Phys Radium 5:497–511

  53. 53.

    Perrin F (1936) Mouvement Brownien d’un ellipsoide (II). Rotation libre et dépolarisation des fluorescences. Translation et diffusion de molécules ellipsoidales. J Phys Radium 7:1–11

Download references


Technical support of Carlos Falla and José Bante (CINVESTAV) in the experimental section is strongly appreciated.


This work was supported by the “Fondo Sectorial de Investigación para la Educación” through the SEP-CONACYT grant No. 235905 (A.I. Oliva-Avilés). V.V. Zozulya acknowledges additional support from CONACYT project No. 256458.

Author information

Correspondence to A. I. Oliva-Avilés.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 372kb)

Supplementary material 2 (MP4 1577 kb)

Supplementary material 3 (MP4 1714 kb)

Supplementary material 4 (MP4 2284 kb)

Supplementary material 5 (MP4 29525 kb)

Supplementary material 1 (MP4 372kb)

Supplementary material 2 (MP4 1577 kb)

Supplementary material 3 (MP4 1714 kb)

Supplementary material 4 (MP4 2284 kb)

Supplementary material 5 (MP4 29525 kb)

Appendix A. Expressions for the frictional and dielectrophoretic terms of the governing motion equations

Appendix A. Expressions for the frictional and dielectrophoretic terms of the governing motion equations

According to the proposed model for the dynamics of CNT rotation, a frictional (Ti,fr) and DEP terms (Ti,DEP) are required, see Eq. (2). The frictional torque for CNT-i is defined as,

$$T_{i,fr} = \, 8\pi\eta\left( {r_{e} } \right)^{3} K_{r} \frac{{d\theta_{i} }}{dt}$$
$$r_{e} = \, \left( a \right)^{1/3} \left( b \right)^{2/3}$$
$$K_{r} = \frac{{4p_{{}}^{2} \left( {1 - p_{{}}^{4} } \right)}}{{3\left[ {\frac{{2p_{{}}^{2/3} \left( {2 - p_{{}}^{ - 2} } \right)}}{{K_{t} }} - 2} \right]}}$$
$$K_{t} = \frac{{\sqrt {\left( {1 - p_{{}}^{ - 2} } \right)} }}{{p_{{}}^{ - 2/3} ln\left[ {p\left( {1 + \sqrt {\left( {1 - p_{{}}^{ - 2} } \right)} } \right)} \right]}}$$
$$p \, = \, a/b$$

In Eq. (10a), η is the viscosity of the suspending fluid, re is the equivalent radius of a sphere of volume equal to that of the CNTs, see Eq. (10b), and Kr and Kt are, respectively, the rotational and translational friction coefficients for prolate ellipsoids [52, 53], with p as the CNT aspect ratio (length/diameter), see Eq. (10e). As can be noticed, the frictional torque depends on the instantaneous angular velocity of the CNT (i/dt). On the other hand, according to the DEP theory, the induced dipole on the CNT-i interacts with the external electric field and tends to align them along the field direction [33, 34] following the expression,

$$T_{i,DEP} = \frac{1}{4}\,V_{CNT}\epsilon_{m} E^{2} Re[\alpha^{*}]sin(2\theta_{i} )$$
$$\alpha^{*} = \frac{{\left( {\varepsilon_{eq}^{*} - \varepsilon_{m}^{*} } \right)^{2} }}{{\left[ {\varepsilon_{m}^{*} + \left( {\varepsilon_{eq}^{*} - \varepsilon_{m}^{*} } \right)L} \right]\left( {\varepsilon_{eq}^{*} + \varepsilon_{m}^{*} } \right)}}$$
$$\varepsilon_{eq}^{*} = \varepsilon_{lay}^{*} \left[ {\frac{{\varepsilon_{CNT}^{*} + \frac{\delta }{2a}\left( {\varepsilon_{CNT}^{*} - \varepsilon_{lay}^{*} } \right)}}{{\varepsilon_{lay}^{*} + \frac{\delta }{2a}\left( {\varepsilon_{CNT}^{*} - \varepsilon_{lay}^{*} } \right)}}} \right]$$
$$\varepsilon^{*} = \varepsilon - j\frac{\sigma }{2\pi f}$$
$$L = \frac{{ln\left( {2p} \right) - 1}}{{p^{2} }}$$

In Eq. (11a), VCNT is the volume of the CNTs (VCNT= 4πab2/3), εm is the real permittivity of the suspending fluid, E is the electric field magnitude, and α* is the complex DEP depolarization factor for ellipsoidal particles under rotation, see Eq. (11b), with L as the longitudinal axis depolarization factor, see Eq. (11e) [23, 31]. As can be noticed from the expressions, the complex polarization factor depends on the interphase CNT/fluid layer properties [23, 31] through the complex equivalent permittivity (εeq*, see Eq. (11c)), which depends on the complex permittivity of the CNTs (εCNT*), of the interphase layer (εlay*) and of the thickness of such a layer, δ. From Eq. (11d), the complex permittivity depends on the real permittivity (ε) and conductivity (σ); thus, the expressions of εCNT*, εlay* and εm* can be obtained from Eq. (11d). For the translational motion, the contribution of the drag forces of the surrounding medium needs to be considered, see Eq. (5a) and (5b). When the CNTs are considered as prolate ellipsoids, the frictional terms for the x- and y-motion are expressed as [31, 52, 53],

$$\left( {F_{i,fr} } \right)_{x} = \, 6\pi \eta r_{e} K_{t} \frac{{dx_{i} }}{dt}$$
$$\left( {F_{i,fr} } \right)_{y} = \, 6\pi \eta r_{e} K_{t} \frac{{dy_{i} }}{dt}$$

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oliva-Avilés, A.I., Alonzo-García, A., Zozulya, V.V. et al. A dielectrophoretic study of the carbon nanotube chaining process and its dependence on the local electric fields. Meccanica 53, 2773–2791 (2018).

Download citation


  • Carbon nanotubes
  • Dielectrophoresis
  • Classical electrodynamics
  • AC electric fields
  • Dynamic motion