Meccanica

, Volume 53, Issue 7, pp 1917–1929 | Cite as

Robotically controlled scale-model testing of masonry vault collapse

  • Cristián Calvo Barentin
  • Tom Van Mele
  • Philippe Block
New Trends in Mechanics of Masonry

Abstract

Scale-model testing can be used to understand the equilibrium and validate the computational modelling of discrete-element assemblies subjected to external loads or support displacements. This paper proposes a novel approach to investigate the collapse of discrete-element assemblies using 3D-printed scale models manipulated with force-sensitive robotic arms combined with an optical measuring system. To demonstrate that this provides a more flexible and comprehensive solution for the assessment of the structural behaviour of unreinforced masonry structures, the same setup is used to conduct different types of experiments on a 3D-printed model of a cross vault. First, the robotic arms are used to apply a point load in different locations while measuring the resistance of the vault until collapse. In a second experiment, the robotic arms are used to simulate the effect of progressive differential settlement of the supports of the vault. The trajectory along which the displacement of the support is applied is based on real-time measurements by the force-sensitive robots of the occurring outward thrust.

Keywords

Masonry Vaults Collapse Scale-model testing Stability Lightweight robots Force sensing As-built geometry 

Notes

Acknowledgements

This research is supported by the NCCR Digital Fabrication, funded by the Swiss National Science Foundation (NCCR Digital Fabrication Agreement # 51NF40-141853).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Addis B (2005) A history of using scale models to inform the design of structures. Instituto Juan de Herrera, Madrid, pp 9–14Google Scholar
  2. 2.
    Albu-Schäffer A, Haddadin S, Ott Ch, Stemmer A, Wimböck T, Hirzinger G (2007) The DLR lightweight robot: design and control concepts for robots in human environments. Ind Robot Int J 34(5):376–385. doi: 10.1108/01439910710774386 CrossRefGoogle Scholar
  3. 3.
    Andrews Larry (2001) A template for the nearest neighbor problem. C/C++ Users J 19(11):40–49 ISSN 1075-2838Google Scholar
  4. 4.
    Besl Paul J, McKay Neil D (1992) A method for registration of 3-d shapes. IEEE Trans Pattern Anal Mach Intell 14(2):239–256. doi: 10.1109/34.121791 ISSN 0162-8828CrossRefGoogle Scholar
  5. 5.
    Bischoff R, Kurth J, Schreiber G, Koeppe R, Albu-Schäffer A, Beyer A, Haddadin S, Stemer A, Grunwald G, Hirzinger G (2010) The lightweight robot arm a new reference platform for robotics research and manufacturing. In: ISR/robotik, pp 741–748Google Scholar
  6. 6.
    Danyzy A (1732) Méthode générale pour déterminer la résistance qu’il faut opposer à la poussée des voûtes. Histoire de la Société des Sciences établie à Montpellier 2:40–56Google Scholar
  7. 7.
    Garcia S (1991) Compendio de architectura y simetría de los templos. Colección “Tratadistas Castellano-Leoneses”, 1991. Colegio Oficial de Arquitectos en Valladolid, 1681Google Scholar
  8. 8.
    GOM. Optical Measuring Techniques. http://www.gom.com/, 2016. Accessed Oct 21 2016
  9. 9.
    Heyman J (1995) The stone skeleton: structural engineering of masonry architecture. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  10. 10.
    Huerta S (2006) Geometry and equilibrium: the gothic theory of structural design. Struct Eng 84(2):23–28 ISSN 1466-5123Google Scholar
  11. 11.
    KUKA. KUKA Industrial Robots. http://www.kuka-robotics.com/, 2016. Accessed Oct 21 2016
  12. 12.
    Ochsendorf J (2006) The masonry arch on spreading supports. Struct Eng 84(2):29–35MathSciNetGoogle Scholar
  13. 13.
    Quiñonez A, Zessin J, Nutzel A, Ochsendorf J (2010) Small-sale models for testing masonry structures. Adv Mater Res 133–134:497–502. doi: 10.4028/www.scientific.net/AMR.133-134.497 CrossRefGoogle Scholar
  14. 14.
    Rhinoceros. NURBS modelling for Windows. http://www.rhino3d.com/, 2016. Accessed Oct 21 2016
  15. 15.
    Rossi M, Calderini C, Lagomarsino S (2016) Experimental testing of the seismic in-plane displacement capacity of masonry cross vaults through a scale model. Bull Earthq Eng 13(10):261–281. doi: 10.1007/s10518-015-9815-1 CrossRefGoogle Scholar
  16. 16.
    Rossi M, Barentin CC, Van Mele T, Block P (2017) Experimental study on the behaviour of masonry pavilion vaults on spreading supports. Structures 11:110–120. doi: 10.1016/j.istruc.2017.04.008 ISSN 2352-0124CrossRefGoogle Scholar
  17. 17.
    Stratasys. 3D Printing Solutions. http://www.stratasys.com/, 2016. Accessed Oct 21 2016
  18. 18.
    Theodossopoulos D, Sinha BP, Usmani AS, Macdonald AJ (2002) Assessment of the structural response of masonry cross vaults. Strain 38(3):119–127. doi: 10.1046/j.0039-2103.2002.00021.x (ISSN 1475-1305)CrossRefGoogle Scholar
  19. 19.
    Van Mele T, McInerney J, DeJong M, Block P (2012) Physical and computational discrete modelling of masonry vault collapse. In: Jasie\(\grave{n}\)ko J (eds) Structural analysis of historical constructions, pp 2552–2560Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.ETH Zurich, Institute of Technology in ArchitectureZurichSwitzerland

Personalised recommendations