Meccanica

pp 1–16 | Cite as

Parametric design of the band structure for lattice materials

Recent Advances on the Mechanics of Materials

Abstract

Lattice materials are often investigated to determine how small parameter variations in the periodic microstructrure can influence the elastic wave propagation. A general hierarchical scheme, based on asymptotic perturbation techniques, is outlined to analytically assess the parametric sensitivity of the material band structure to a generic multi-parametric perturbation (direct problem). Modeling refinements, parameters updates, microstructural damages and manufacturing irregularities can be treated indifferently and simultaneously. According to a converse strategy, based on the inversion of the sensitivity problem, a hierarchical scheme is sketched to identify the parameter combinations which realize a design band structure (inverse problem). The direct and inverse problem are applied to the sensitivity analysis and band structure design of the anti-tetrachiral lattice material. Despite the high spectral density and the high-dimensional parameter space, the multi-parameter perturbation technique demonstrates its suitability in, first, analytically—although asymptotically—describe the material spectrum and, second, designing the material microstructure to obtain the desired spectral components. The inverse problem solution is discussed in terms of existence, uniqueness, asymptotic consistency and physical admissibility.

Keywords

Lattice materials Band structure Parametric design Inverse problem Perturbation methods 

References

  1. 1.
    Alderson A, Alderson K, Attard D, Evans K, Gatt R, Grima J, Miller W, Ravirala N, Smith C, Zied K (2010) Elastic constants of 3-, 4-and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading. Compos Sci Technol 70(7):1042–1048CrossRefGoogle Scholar
  2. 2.
    Bacigalupo A (2014) Second-order homogenization of periodic materials based on asymptotic approximation of the strain energy: formulation and validity limits. Meccanica 49(6):1407–1425MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bacigalupo A, De Bellis ML (2015) Auxetic anti-tetrachiral materials: equivalent elastic properties and frequency band-gaps. Compos Struct 131:530–544CrossRefGoogle Scholar
  4. 4.
    Bacigalupo A, Gambarotta L (2014) Computational dynamic homogenization for the analysis of dispersive waves in layered rock masses with periodic fractures. Comput Geotech 56:61–68CrossRefGoogle Scholar
  5. 5.
    Bacigalupo A, Gambarotta L (2014) Homogenization of periodic hexa- and tetrachiral cellular solids. Compos Struct 116:461–476CrossRefGoogle Scholar
  6. 6.
    Bacigalupo A, Gambarotta L (2016) Simplified modelling of chiral lattice materials with local resonators. Int J Solids Struct 83:126–141CrossRefGoogle Scholar
  7. 7.
    Bacigalupo A, Lepidi M (2016) High-frequency parametric approximation of the Floquet–Bloch spectrum for anti-tetrachiral materials. Int J Solids Struct 97–98:575–592CrossRefGoogle Scholar
  8. 8.
    Bacigalupo A, Gnecco G, Lepidi M, Gambarotta L (2016) Optimal design of low-frequency band gaps in anti-tetrachiral lattice meta-materials. Compos Part B. doi:10.1016/j.compositesb.2016.09.062 Google Scholar
  9. 9.
    Bacigalupo A, Lepidi M, Gnecco G, Gambarotta L (2016) Optimal design of auxetic hexachiral metamaterials with local resonators. Smart Mater Struct 25(5):054009ADSCrossRefGoogle Scholar
  10. 10.
    Bensoussan A, Lions J, Papanicolaou G (2011) Asymptotic analysis for periodic structures. AMS Chelsea publishing series, American Mathematical Society, Providence (Rhode Island)CrossRefMATHGoogle Scholar
  11. 11.
    Bigoni D, Guenneau S, Movchan A, Brun M (2013) Elastic metamaterials with inertial locally resonant structures: application to lensing and localization. Phys Rev B 87(17):174303ADSCrossRefGoogle Scholar
  12. 12.
    Brillouin L (2003) Wave propagation in periodic structures: electric filters and crystal lattices. Courier Corporation, Mineola, New YorkMATHGoogle Scholar
  13. 13.
    Chen Y, Scarpa F, Liu Y, Leng J (2013) Elasticity of anti-tetrachiral anisotropic lattices. Int J Solids Struct 50(6):996–1004CrossRefGoogle Scholar
  14. 14.
    Craster RV, Kaplunov J, Nolde E, Guenneau S (2012) Bloch dispersion and high frequency homogenization for separable doubly-periodic structures. Wave Motion 49(2):333–346MathSciNetCrossRefGoogle Scholar
  15. 15.
    Desmoulins A, Zelhofer AJ, Kochmann DM (2016) Auxeticity in truss networks and the role of bending versus stretching deformation. Smart Mater Struct 25(5):054003ADSCrossRefGoogle Scholar
  16. 16.
    Dirrenberger J, Forest S, Jeulin D (2012) Elastoplasticity of auxetic materials. Comput Mater Sci 64:57–61CrossRefGoogle Scholar
  17. 17.
    Dirrenberger J, Forest S, Jeulin D (2013) Effective elastic properties of auxetic microstructures: anisotropy and structural applications. Int J Mech Mater Des 9(1):21–33CrossRefGoogle Scholar
  18. 18.
    Dos Reis F, Ganghoffer J (2012) Equivalent mechanical properties of auxetic lattices from discrete homogenization. Comput Mater Sci 51(1):314–321CrossRefGoogle Scholar
  19. 19.
    Gatt R, Attard D, Farrugia PS, Azzopardi KM, Mizzi L, Brincat JP, Grima JN (2013) A realistic generic model for anti-tetrachiral systems. Phys Status Solidi (b) 250(10):2012–2019Google Scholar
  20. 20.
    Ghanem R, Shinozuka M (1995) Structural-system identification. I: Theory. J Eng Mech 121(2):255–264CrossRefGoogle Scholar
  21. 21.
    Grima JN, Gatt R, Farrugia PS (2008) On the properties of auxetic meta-tetrachiral structures. Phys Status Solidi (b) 245(3):511–520ADSCrossRefGoogle Scholar
  22. 22.
    Imai H, Yun CB, Maruyama O, Shinozuka M (1989) Fundamentals of system identification in structural dynamics. Probab Eng Mech 4(4):162–173CrossRefGoogle Scholar
  23. 23.
    Lepidi M (2013) Multi-parameter perturbation methods for the eigensolution sensitivity analysis of nearly-resonant non-defective multi-degree-of-freedom systems. J Sound Vib 332(4):1011–1032ADSCrossRefGoogle Scholar
  24. 24.
    Lepidi M, Gattulli V (2014) A parametric multi-body section model for modal interactions of cable-supported bridges. J Sound Vib 333(19):4579–4596ADSCrossRefGoogle Scholar
  25. 25.
    Lepidi M, Piccardo G (2014) Aeroelastic stability of a symmetric multi-body section model. Meccanica 50(3):731–749MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Lepidi M, Gattulli V, Vestroni F (2009) Damage identification in elastic suspended cables through frequency measurement. J Vib Control 15(6):867–896MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Liu X, Huang G, Hu G (2012) Chiral effect in plane isotropic micropolar elasticity and its application to chiral lattices. J Mech Phys Solids 60(11):1907–1921ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Lorato A, Innocenti P, Scarpa F, Alderson A, Alderson K, Zied K, Ravirala N, Miller W, Smith C, Evans K (2010) The transverse elastic properties of chiral honeycombs. Compos Sci Technol 70(7):1057–1063CrossRefGoogle Scholar
  29. 29.
    Luongo A (1995) Eigensolutions of perturbed nearly defective matrices. J Sound Vib 185(3):377–395ADSMathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Luongo A, Ferretti M (2015) Can a semi-simple eigenvalue admit fractional sensitivities? Appl Math Comput 255:165–178MathSciNetMATHGoogle Scholar
  31. 31.
    Nayfeh AH (2007) Perturbation methods. Wiley-VCH Verlag GmbH, KGaA, WeinheimGoogle Scholar
  32. 32.
    Panasenko N, Bakhvalov N (1989) Homogenization: averaging processes in periodic media: mathematical problems in the mechanics of composite materials. Kluwer Academic, DordrechtMATHGoogle Scholar
  33. 33.
    Prall D, Lakes R (1997) Properties of a chiral honeycomb with a poisson’s ratio of \(-\)1. Int J Mech Sci 39(3):305–314CrossRefMATHGoogle Scholar
  34. 34.
    Seyranian A, Mailybaev A (2003) Multiparameter stability theory with mechanical applications., Series on stability, vibration, and control of systemsWorld Scientific, SingaporeCrossRefMATHGoogle Scholar
  35. 35.
    Spadoni A, Ruzzene M (2012) Elasto-static micropolar behavior of a chiral auxetic lattice. J Mech Phys Solids 60(1):156–171ADSCrossRefGoogle Scholar
  36. 36.
    Spadoni A, Ruzzene M, Gonella S, Scarpa F (2009) Phononic properties of hexagonal chiral lattices. Wave Motion 46(7):435–450MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Tee K, Spadoni A, Scarpa F, Ruzzene M (2010) Wave propagation in auxetic tetrachiral honeycombs. J Vib Acoust 132(3):031007CrossRefGoogle Scholar
  38. 38.
    Vestroni F, Pau A (2011) Dynamic characterization and damage identification, vol 529. CISM International Centre for Mechanical Sciences, Springer, StirlingshireMATHGoogle Scholar
  39. 39.
    Zhu D, Huang X, Hua H, Zheng H (2015) Vibration isolation characteristics of finite periodic tetra-chiral lattice coating filled with internal resonators. Proc Inst Mech Eng Part C J Mech Eng Sci 230(16):2840–2850CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.DICCA - Università di GenovaGenoaItaly
  2. 2.IMT School for Advanced Studies LuccaLuccaItaly

Personalised recommendations