Skip to main content
Log in

Random dynamical systems: addressing uncertainty, nonlinearity and predictability

  • 50th Anniversary of Meccanica
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Nonlinearity and noise play a significant role in an enormous range of subjects across the entire spectrum of science and engineering. This paper considers several research topics that encompass the area of random dynamical systems (RDS). A general overview of the problems, the multidisciplinary methods required for their analysis, and relevant results achieved in RDS are given with particular emphasis on developments during the past 25 years. The first part of this paper focuses on developing methods to unravel complex interactions between noise and nonlinearities using a mix of multidisciplinary approaches from theory, modeling, and simulation. Practical applications of these research results are beginning to appear across the entire spectrum of mechanics; for example, vibration absorbers, panel flutter, variable speed machining processes, and mixing and transport phenomena in fluid mechanics. The second part of this paper focuses on developing new algorithms and tools for the collection, assimilation and harnessing of data by threading together ideas ranging from random dynamical systems to information theory. A new particle filtering algorithm that combines stochastic homogenization with filtering theory is presented. Importance sampling and control methods are then used as a basic and flexible tool for the construction of the proposal density inherent in particle filtering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arnold L, Oeljeklaus E, Pardoux E (1986) Almost sure and moment stability for linear itô equations. Lyapunov exponents, lecture notes in mathematics, vol 1186. Springer, New York

    MATH  Google Scholar 

  2. Arnold L, Namachchivaya NS, Schenk KL (1996) Toward an understanding of stochastic Hopf bifurcations: a case study. J Bifurc Chaos 6:1947–1975

    Article  MATH  Google Scholar 

  3. Arnold L, Doyle M, Namachchivaya NS (1997) Small noise expansion of moment Lyapunov exponents for two-dimensional systems. Dyn Stab Syst 12:187–211

    Article  MathSciNet  MATH  Google Scholar 

  4. Arnold L (1998) Random dynamical systems. Springer monographs in mathematics. Springer, Berlin

    Book  Google Scholar 

  5. Arnold L, Imkeller P, Namachchivaya NS (2004) The asymptotic stability of a noisy non-linear oscillator. J Sound Vib 269(3–5):1003–1029

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Arnold L, Imkeller P (1998) Normal forms for stochastic differential equations. Probab Theory Relat Fields 110(4):559–588

    Article  MathSciNet  MATH  Google Scholar 

  7. Arnold L, Khasminskii R (1995) Stability index for nonlinear stochastic differential equations. Proc Symp Pure Math 57:543–551

    Article  MathSciNet  MATH  Google Scholar 

  8. Arnold L, Scheutzow M (1995) Perfect cocycles through stochastic differential equations. Probab Theory Relat Fields 101:65–88

    Article  MathSciNet  MATH  Google Scholar 

  9. Bain A, Crisan D (2009) Fundamentals of stochastic filtering. Springer monographs in mathematics. Springer, Berlin

    Book  MATH  Google Scholar 

  10. Baxendale PH (1994) A stochastic Hopf bifurcation. Probab Theory Relat Fields 99(2):581–616

    Article  MathSciNet  MATH  Google Scholar 

  11. Baxendale PH (2002) Lyapunov exponents for small random perturbations of Hamiltonian systems. Ann Probab 30(1):101–134

    Article  MathSciNet  MATH  Google Scholar 

  12. Baxendale PH (2004) Stochastic averaging and asymptotic behavior of the stochastic Duffing–van der Pol equation. Stoch Process Appl 113(2):235–272

    Article  MathSciNet  MATH  Google Scholar 

  13. Crandall S, Zhu WQ (1983) Random vibration: a survey of recent developments. J Appl Mech 50(4b):953–962

    Article  MATH  Google Scholar 

  14. Dembo A, Zeitouni O (2010) Large deviations techniques and applications. Stochastic modelling and applied probability. Springer, Berlin

    Book  MATH  Google Scholar 

  15. Dostal L, Kreuzer E, Namachchivaya N Sri (2012) Non-standard stochastic averaging of large-amplitude ship rolling in random seas. Proc R Soc A 468(2148):4146–4173

    Article  ADS  MathSciNet  Google Scholar 

  16. Doyle M, Namachchivaya NS (1994) Almost-sure asymptotic stability of a general four dimensional dynamical system driven by real noise. J Stat Phys 75(3/4):525–552

    Article  ADS  MATH  Google Scholar 

  17. Ethier SN, Kurtz TG (1986) Markov processes: characterization and convergence. Wiley, New York

    Book  MATH  Google Scholar 

  18. Freidlin MI, Weber M (1998) Random perturbations of nonlinear oscillators. Ann Probab 26(3):925–967

    Article  MathSciNet  MATH  Google Scholar 

  19. Freidlin MI, Wentzell AD (1998) Random perturbations of dynamical systems. Grundlehren der Mathematischen Wissenschaften, vol 260. Springer, Berlin

    Book  MATH  Google Scholar 

  20. Imkeller P, Namachchivaya NS, Perkowski N, Yeong HC (2013) Dimensional reduction in nonlinear filtering: a homogenization approach. Ann Appl Probab 23(6):2161–2603

    Article  MathSciNet  MATH  Google Scholar 

  21. Imkeller P, Lederer C (1999) An explicit description of the Lyapunov exponents of the noisy damped harmonic oscillator. Dyn Stab Syst 14(4):385–405

    Article  MathSciNet  MATH  Google Scholar 

  22. Kushner HJ (1990) Weak convergence methods and singularly perturbed stochastic control and filtering problems. Birkhäuser, Boston

    Book  MATH  Google Scholar 

  23. Leng G, Namachchivaya NS, Talwar S (1992) Robustness of nonlinear systems perturbed by external random excitation. ASME J Appl Mech 59(4):1015–1022

    Article  MathSciNet  MATH  Google Scholar 

  24. Lingala N, Namachchivaya NS, Perkowski N, Yeong HC (2012) Particle filtering in high-dimensional chaotic systems. Chaos 22:047509

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Lingala N, Namachchivaya NS, O’Reilly OM, Wihstutz V (2013) Almost sure asymptotic stability of an oscillator with delay feedback excited by finite state Markov noise. Probab Eng Mech 32:21–30

    Article  Google Scholar 

  26. Lingala N, Namachchivaya NS, Perkowski N, Yeong HC (2014) Optimal nudging in particle filters. Probab Eng Mech 32:21–30

    Article  Google Scholar 

  27. Lingala N, Namachchivaya NS (2016) Perturbations of linear delay differential equations at the verge of instability. Phys Rev E 93:21–30

    Article  MATH  Google Scholar 

  28. Moshchuk N, Khasminskii R (1998) Moment Lyapunov exponent and stability index for linear conservative system with small random perturbation. SIAM J Appl Math 58(1):245–256

    Article  MathSciNet  MATH  Google Scholar 

  29. Namachchivaya NS, Sowers RB, Vedula L (2001) Nonstandard reduction of noisy Duffing—van der Pol equation. J Dyn Syst 16(3):223–245

    Article  MATH  Google Scholar 

  30. Namachchivaya NS, Kok D, Ariaratnam ST (2007) Stability of noisy nonlinear auto-parametric systems. Nonlinear Dyn 47(3):143–165

    MathSciNet  MATH  Google Scholar 

  31. Namachchivaya NS, Lin YK (1991) Method of stochastic normal forms. Int J Nonlinear Mech 26(6):931–943

    Article  MathSciNet  MATH  Google Scholar 

  32. Namachchivaya NS, Van Roessel HJ (1993) Maximal Lyapunov exponent and rotation numbers for two coupled oscillators driven by real noise. J Stat Phys 71(3/4):549–567

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Namachchivaya NS, Van Roessel HJ (2004) Averaging of noisy nonlinear systems with rapidly oscillating and decaying components. Nonlinear Dyn 36:329–347

    Article  MathSciNet  MATH  Google Scholar 

  34. Namachchivaya N Sri, Sowers R (2002) Rigorous stochastic averaging at a center with additive noise. Meccanica 37(2):85–114

    Article  MathSciNet  MATH  Google Scholar 

  35. Namachchivaya NS, Vedula L (2000) Stabilization of linear systems by noise: application to flow induced oscillations. Dyn Stab Syst 15(2):185–208

    Article  MathSciNet  MATH  Google Scholar 

  36. Onu K, Namachchivaya N Sri (2010) Stochastic averaging of surface waves. Proc R Soc A 466(3):2363–2381

    Article  ADS  MATH  Google Scholar 

  37. Oseledec VI (1968) A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems. Trans Mosc Math Soc 19:197–231

    MathSciNet  Google Scholar 

  38. Papanicolaou GC, Stroock D, Varadhan SRS (1977) Martingale approach to some limit theorem. In: Statistical mechanics and dynamical systems, and papers from 1976 turbulence conference. Mathematics Department, Duke University

  39. Park JH, Namachchivaya NS, Sowers RB (2008) A problem in stochastic averaging of nonlinear filters. Stoch Dyn 8(3):543–560

    Article  MathSciNet  MATH  Google Scholar 

  40. Park JH, Namachchivaya NS, Sowers RB (2010) Dimensional reduction in nonlinear filtering. Nonlinearity 23(2):305–325

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Park JH, Namachchivaya NS, Yeong HC (2011) Particle filters in a multiscale environment: homogenized hybrid particle filter. J Appl Mech 78(6):1–10

    Article  Google Scholar 

  42. Popp K, Romberg O (2001) Influence of stochastic effects on flow induced vibrations in tube bundles. In: Narayanan S, Iyengar RN (eds) IUTAM symposium on nonlinearity and stochastic structural dynamics. Solid mechanics and its applications, vol 85. Kluwer Academic Publishers, pp 197–208

  43. Schimansky-Geier L, Herzel H (1993) Positive Lyapunov exponents in the Kramers oscillator. J Stat Phys 782:141–147

    Article  ADS  MATH  Google Scholar 

  44. Singh P, Yeong HC, Zhang H, Rapti Z, Sri Namachchivaya N (2016) Stochastic stability and dynamics of a two-dimensional structurally nonlinear airfoil in turbulent flow. Meccanica. doi:10.1007/s11012-016-0445-8

    MathSciNet  Google Scholar 

  45. Stroock DW, Varadhan SRS (1979) Multidimensional diffusion processes. Grundlehren der Mathematischen Wissenschaften, vol 233. Springer, Berlin

    Google Scholar 

  46. Wedig WV (1990) Invariant measures and Lyapunov exponents for generalized parameter fluctuations. Struct Saf 8(1–4):13–25

    Article  Google Scholar 

  47. Weinan E, Liu D, Vanden-Eijnden E (2005) Analysis of multiscale methods for stochastic differential equations. Commun Pure Appl Math 58:1544–1585

    Article  MathSciNet  MATH  Google Scholar 

  48. Yeong HC, Beeson R, Namachchivaya NS, Perkowski N, Sauer PW (2017) Dynamic data-driven adaptive observations in data assimilation for multi-scale systems. In: Ravela S, Blasch E, Aved A (eds) Dynamic data driven applications systems. Springer, New York (to appear)

    Google Scholar 

  49. Zakai M (1969) On the optimal filtering of diffusion processes. Z Wahrscheinlichkeitstheorie Verwandte Geb 11:230–243

    Article  MathSciNet  MATH  Google Scholar 

  50. Zeeman E (1988) On the classification of dynamical systems. Bull Lond Math Soc 20:545–557

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author acknowledges the support of the AFOSR under Grant Numbers FA9550-12-1-0390 and FA9550-17-1-0001 and the National Science Foundation (NSF) under grant number CMMI 1030144. Any opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the NSF. The author acknowledges the careful reading of the manuscript and helpful comments by R. Beeson and H. C. Yeong. This paper contains results from several joint work with N. Lingala, J.H. Park, Z. Rapti, P. Singh, R. Sowers, H. C. Yeong of University of Illinois and P. Imkeller, and N. Perkowski of Humboldt-Universität zu Berlin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navaratnam Sri Namachchivaya.

Additional information

This is an expanded version of the keynote lecture presented by the author at the 8th European Nonlinear Dynamics Conference (ENOC 2014) in Vienna, Austria, on July 8, 2014, under the same title.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Namachchivaya, N.S. Random dynamical systems: addressing uncertainty, nonlinearity and predictability. Meccanica 51, 2975–2995 (2016). https://doi.org/10.1007/s11012-016-0570-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-016-0570-4

Keywords

Navigation