, Volume 51, Issue 12, pp 3149–3165 | Cite as

I-DIC-based identification strategy of failure criteria: application to titanium and nickel-based alloys

  • Dominik Lindner
  • Olivier Allix
  • François Hild
  • Xavier Pinelli
  • Olivier Paulien-Camy
50th Anniversary of Meccanica


Integrated digital image correlation (I-DIC) is used to probe three different failure criteria on two high performance alloys. The approach consists of two steps. First, the mechanical state of each analyzed test is determined as best as possible by calibrating the parameters of a given elastoplastic law. Thin and thick samples are studied, which induce totally different states of equivalent plastic strain. Second, the state of stresses on the actual fractured surface is assessed by post-processing the 3D finite strain simulations of the I-DIC framework. These data are used to analyze different local criteria. It is found that a maximum eigen stress criterion is well adapted to the studied materials.


Digital image correlation Fractography Finite element simulations Rankine criterion Voce law 



The I-DIC code used herein is part of the Metil platform developed by Hugo Leclerc [71]. Dominik Lindner was supported by ANRT/CIFRE (Grant Number 2012–1519). This work was funded by SAFRAN Helicopter Engines. It is also a pleasure to acknowledge the support of BPI France (“DICCIT” project).

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Robinson E (1944) Bursting tests of steam-turbine disk wheels. Trans of ASME 66:373Google Scholar
  2. 2.
    Mazière M, Besson J, Forest S, Tanguy B, Chalons H, Vogel F (2009) Overspeed burst of elastoviscoplastic rotating disks–Part I: analytical and numerical stability analyses. Eur J Mech A Solids 28(1):36CrossRefzbMATHGoogle Scholar
  3. 3.
    Mazière M, Besson J, Forest S, Tanguy B, Chalons H, Vogel F (2009) Overspeed burst of elastoviscoplastic rotating disks -Part II: burst of a superalloy turbine disk. Eur J Mech A Solids 28(3):428CrossRefzbMATHGoogle Scholar
  4. 4.
    Lindner D (2016) Towards the fracture prediction of turbomachinery disks: a contribution of digital image correlation. PhD thesis, Université Paris-SaclayGoogle Scholar
  5. 5.
    Lindner D, Mathieu F, Hild F, Allix O, Minh Ha C, Paulien-Camy O (2015) On the evaluation of stress triaxiality fields in a notched titanium alloy sample via integrated DIC. J Appl Mech 82(7):071014CrossRefGoogle Scholar
  6. 6.
    Vacher P, Dumoulin S, Morestin F, Mguil-Touchal S (1999) Bidimensional strain measurement using digital images. Proc Inst Mech Eng, Part C J Mech Eng Sci 213(8):811CrossRefGoogle Scholar
  7. 7.
    Brunet M, Morestin F (2001) Experimental and analytical necking studies of anisotropic sheet metals. J Mater Proc Technol 112(2–3):214CrossRefGoogle Scholar
  8. 8.
    Wattrisse B, Chrysochoos A, Muracciole J, Némoz-Gaillard M (2001) Analysis of strain localisation during tensile test by digital image correlation. Exp Mech 41(1):29CrossRefzbMATHGoogle Scholar
  9. 9.
    Rastogi PK, Hack E (eds) (2012) Optical methods for solid mechanics: a full-field approach. Wiley-VCH, WeinheimGoogle Scholar
  10. 10.
    Hild F, Roux S (2012) Comparison of local and global approaches to digital image correlation. Exp Mech 52(9):1503CrossRefGoogle Scholar
  11. 11.
    Hild F, Roux S (2006) Digital image correlation: from measurement to identification of elastic properties–a review. Strain 42:69CrossRefGoogle Scholar
  12. 12.
    Leclerc H, Périé JN, Roux S, Hild F (2009) Integrated digital image correlation for the identification of mechanical properties. In: International Conference on Computer Vision/Computer Graphics Collaboration Techniques and Applications, vol. 5496, Springer, Berlin LNCS, pp 161–171Google Scholar
  13. 13.
    Réthoré J (2010) A fully integrated noise robust strategy for the identification of constitutive laws from digital images. Int J Numer Methods Eng 84(6):631CrossRefzbMATHGoogle Scholar
  14. 14.
    Mathieu F, Leclerc H, Hild F, Roux S (2015) Estimation of elastoplastic parameters via weighted FEMU and integrated-DIC. Exp Mech 55(1):105CrossRefGoogle Scholar
  15. 15.
    Abouridouane M (2005) Bruchverhalten von leichtmetallen unter impact-beanspruchung. Ph.D. thesis, RWTH Aachen, AachenGoogle Scholar
  16. 16.
    Tresca H (1864) Mémoire sur l’écoulement des corps solides soumis à de fortes pressions. Comptes Rendus de l’Académie des Sciences (Paris) 59:754Google Scholar
  17. 17.
    von Mises R (1913) Mechanik der festen Körper im plastisch deformablen Zustand. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1913:582zbMATHGoogle Scholar
  18. 18.
    Hill R (1948) A theory of the yielding and plastic flow of anisotropic metals. Proc R Soc Lond A Math Phys Eng Sci 193(1033):281ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Hosford W (1972) Generalized isotropic yield criterion. J Appl Mech 39(2):607CrossRefGoogle Scholar
  20. 20.
    Bridgman PW (1923) The compressibility of thirty metals as a fucntion of pressure and temperature. Proc Am Acad Arts Sci 58(5):163CrossRefGoogle Scholar
  21. 21.
    Bridgman P (1964) Collected experimental papers, vol 1–7. Harvard University Press, Cambridge, MAGoogle Scholar
  22. 22.
    Naghdi P, Essenburg F, Koff W (1958) An experimental study of initial and subsequent yield surfaces in plasticity. J Appl Mech 25(2):201Google Scholar
  23. 23.
    Lode W (1926) Versuche über den Einfluß der mittleren Hauptspannung auf das Fließen der Metalle Eisen, Kupfer und Nickel. Zeitschrift für Physik 36(11):913ADSCrossRefGoogle Scholar
  24. 24.
    Taylor GI, Quinney H (1932) The plastic distortion of metals. Philos Trans R Soc Lond A Math Phys Eng Sci 230(681–693):323ADSCrossRefzbMATHGoogle Scholar
  25. 25.
    Osgood W (1947) Combined stress tests on 24S-T aluminium alloy tubes. J Appl Mech 14:147Google Scholar
  26. 26.
    Bocher L, Delobelle P (1997) Etude expérimentale du comportement cyclique d’un acier du type 316 L sous chargement mutiaxial complexe en traction-torsion-pressions interne et externe. J de Physique III 7:1755ADSCrossRefGoogle Scholar
  27. 27.
    Shiratori E, Ikegami K (1967) A new biaxial tension testing machine with flat specimens. J Soc Mater Sci Jpn 16(165):433CrossRefGoogle Scholar
  28. 28.
    Mönch E, Galster D (1963) A method for producing a defined uniform biaxial tensile stress field. Br J Appl Phys 14(11):810ADSCrossRefGoogle Scholar
  29. 29.
    Hayhurst D (1973) A biaxial-tension creep-rupture testing machine. J Strain Anal Eng Des 8(2):119CrossRefGoogle Scholar
  30. 30.
    Kelly D (1976) Problems in creep testing under biaxial stress systems. J Strain Anal Eng Des 11(1):1CrossRefGoogle Scholar
  31. 31.
    Morrison C (1986) Biaxial testing using cruciform specimens. In: Gooch D, How IM (eds) Techniques for multiaxial creep testing. Springer, Netherlands, Dordrecht, pp 111–126CrossRefGoogle Scholar
  32. 32.
    Makinde A, Thibodeau L, Neale KW (1992) Development of an apparatus for biaxial testing using cruciform specimens. Exp Mech 32(2):138CrossRefGoogle Scholar
  33. 33.
    Boehler J, Demmerle S, Koss S (1994) A new direct biaxial testing machine for anisotropic materials. Exp Mech 34(1):1CrossRefGoogle Scholar
  34. 34.
    Cognard JY, Feuardent V, Virely JM (1997) Optimisation of a structure for biaxial mechanical tests. In: Chedmail P, Bocquet JC, Dornfeld D (eds) Integrated design and manufacturing in mechanical engineering: proceedings of the 1st IDMME conference held in Nantes, France, 15–17 April 1996. Springer, Netherlands, Dordrecht, pp 495–504CrossRefGoogle Scholar
  35. 35.
    Ko HY, Scott RF (1967) A new soil testing apparatus. Géotechnique 17(1):40CrossRefGoogle Scholar
  36. 36.
    Pearce J (1971) A new triaxial apparatus. In: Parry R (ed) Stress–strain behaviour of soils (proceedings of the roscoe memorial symposium). G.T. Foulis and Co., Henley-on Thames, pp 330–339Google Scholar
  37. 37.
    Shima S, Mimura K (1986) Densification behaviour of ceramic powder. Int J Mech Sci 28(1):53CrossRefGoogle Scholar
  38. 38.
    Lanier J (1990) Geomaterials: constitutive equations and modelling. In: Darve F (ed) Recent trends. Laboratory testing, Elsevier Applied Sciences, London, pp 7–26Google Scholar
  39. 39.
    Calloch S, Marquis D (1999) Triaxial tension-compression tests for multiaxial cyclic plasticity. Int J Plast 15:521CrossRefzbMATHGoogle Scholar
  40. 40.
    Calloch S, Bouvet C, Hild F, Doudard C, Lexcellent C (2002) Analysis of mechanical behavior and in-situ observations of Cu-Al-Be SMA under biaxial compressive tests by using DIC, In: SPIE proceedings. vol. 4537, pp. 83–86Google Scholar
  41. 41.
    Petkovski M, Crouch RS, Waldron P (2006) Apparatus for testing concrete under multiaxial compression at elevated temperature (mac2T). Exp Mech 46(3):387CrossRefGoogle Scholar
  42. 42.
    Nakazima K, Kikuma T, Hasuka K (1968) Study on the formability of steel sheets. Yawata Tech Rep 264:8517–8530Google Scholar
  43. 43.
    Marciniak Z, Kuczyński K, Pokora T (1973) Influence of the plastic properties of a material on the forming limit diagram for sheet metal in tension. Int J Mech Sci 15(10):789CrossRefGoogle Scholar
  44. 44.
    Keeler S (1965) Determination of forming limits in automotive stampings. SAE Techn Paper 650535:1–9Google Scholar
  45. 45.
    Goodwin G (1968) Application of strain analysis to sheet metal forming problems in the press shop. SAE Tech Paper 680093:1–8Google Scholar
  46. 46.
    Keeler S (1968) Circular grid system–a valuable aid for evaluating sheet metal formability. SAE Tech Paper 680092:1–9ADSGoogle Scholar
  47. 47.
    Vacher P, Haddad A, Arrieux R (1999) Determination of the forming limit diagrams using image analysis by the corelation method. CIRP Ann–Manuf Technol 48(1):227CrossRefGoogle Scholar
  48. 48.
    Breutinger F (2006) Verformungsverhalten und Verformungskinetik von Titan technischer Reinheit und der Titanlegierung TiAl6v4 im Bereich niedriger homologer Temperaturen von 0, 22 (\(150^\circ {\text{C}}\)) bis 0, 48 (\(650^\circ {\text{ C }}\)). Ph.D. thesis, Universität Erlangen-NürnbergGoogle Scholar
  49. 49.
    Sajjadi S, Elahifar H, Farhangi H (2008) Effects of cooling rate on the microstructure and mechanical properties of the Ni-base superalloy UDIMET 500. J Alloys Compd 455(1–2):215CrossRefGoogle Scholar
  50. 50.
    Davis JR (2000) Nickel, cobalt, and their alloys. In: ASM specialty handbook, ASM International, Materials Park, OHGoogle Scholar
  51. 51.
    Lambert N, Drapier JM (1968) Structural stability of Udimet 500 a nickel base superalloy. In: International symposium on structural satbility of SuperalloysGoogle Scholar
  52. 52.
    Hild F, Roux S (2012) Digital image correlation. In: Rastogi P, Hack E (eds) Optical methods for solid mechanics. A full-field approach. Wiley-VCH, Weinheim (Germany), pp 183–228Google Scholar
  53. 53.
    de Saint-Venant A Barré (1870) Sur l’établissement des équations des mouvements intérieurs opérés dans les corps solides ductiles au-delà des limites où l’élasticité pourrait les ramener à leur premier état. Comptes Rendus de l’Académie des Sciences (Paris) 70:473zbMATHGoogle Scholar
  54. 54.
    Beltrami E (1885) Sulle condizioni di resistenza dei corpi elastici. Il Nuovo Cimento (1877–1894) 18(1):145CrossRefzbMATHGoogle Scholar
  55. 55.
    Huber M (1904) Specific deformation work as a measure of material damage [in Polish]. Czasopismo Techniczne, Lwów 15Google Scholar
  56. 56.
    Hencky H (1924) Zur Theorie plastischer Deformationen und der hierdurch im Material hervorgerufenen Nachspannungen. Zeitschrift für Angewandte Mathematik und Mechanik 4(4):323ADSCrossRefzbMATHGoogle Scholar
  57. 57.
    Coulomb CA (1773) Essai sur une application des règles de maximis et minimis à quelques problèmes de statique, relatifs à l’architecture. Mémoires de mathématique & de physique, présentés à l’Académie Royale des Sciences par divers savans 7:343Google Scholar
  58. 58.
    Rankine WM (1857) On the stability of loose Earth. Philos Trans R Soc Lond 147:9CrossRefGoogle Scholar
  59. 59.
    McClintock F (1968) A criterion for ductile fracture by growth of holes. J Appl Mech 35(2):363CrossRefGoogle Scholar
  60. 60.
    Rice J, Tracey D (1969) On the ductile enlargement of voids in triaxial stress fields. J Mech Phys Solids 17:201ADSCrossRefGoogle Scholar
  61. 61.
    Lemaitre J (1985) A continuous damage mechanics model for ductile fracture. J Eng Mater Technol 107:83–89CrossRefGoogle Scholar
  62. 62.
    Lemaitre J (1992) A course on damage mechanics. Springer-Verlag, BerlinCrossRefzbMATHGoogle Scholar
  63. 63.
    Voyiadjis GZ (ed) (2014) Handbook of damage mechanics. Springer, New York, NYGoogle Scholar
  64. 64.
    Morgeneyer T, Taillandier-Thomas T, Helfen L, Baumbach T, Sinclair I, Roux S, Hild F (2014) In situ 3D observation of early strain localisation during failure of thin Al alloy (2198) sheet. Acta Mater 69:78CrossRefGoogle Scholar
  65. 65.
    Allix O, Feissel P, Nguyen HM (2005) Identification strategy in the presence of corrupted measurements. Eng Comput 22(5–6):487–504CrossRefzbMATHGoogle Scholar
  66. 66.
    Feissel P, Allix O (2007) Modified constitutive relation error identification strategy for transient dynamics with corrupted data: the elastic case. Comput Methods Appl Mech Eng 196(13):1968ADSCrossRefzbMATHGoogle Scholar
  67. 67.
    Bai Y, Wierzbicki T (2008) A new model of metal plasticity and fracture with pressure and Lode dependence. Int J Plast 24(6):1071CrossRefzbMATHGoogle Scholar
  68. 68.
    Papasidero J, Doquet V, Mohr D (2015) Ductile fracture of aluminum 2024–T351 under proportional and non-proportional multi-axial loading: Bao-Wierzbicki results revisited. Int J Solids Struct 69–70:459CrossRefGoogle Scholar
  69. 69.
    Roux S, Réthoré J, Hild F (2009) Digital image correlation and fracture: an advanced technique for estimating stress intensity factors of 2D and 3D cracks. J Phys D Appl Phys 42(21):214004ADSCrossRefGoogle Scholar
  70. 70.
    Cao TS, Maire E, Verdu C, Bobadilla C, Lasne P, Montmitonnet P, Bouchard PO (2014) Characterization of ductile damage for a high carbon steel using 3D X-ray micro-tomography and mechanical tests Application to the identification of a shear modified GTN model. Comput Mater Sci 84:175CrossRefGoogle Scholar
  71. 71.
    Leclerc H (2007) Plateforme metil: optimisations et facilités liées à la génération de code. In 8e Colloque National en Calcul des StructuresGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.LMTENS Paris-Saclay/CNRS/Université Paris-SaclayCachan CedexFrance
  2. 2.SAFRAN Helicopter EnginesBordesFrance

Personalised recommendations