Advertisement

Meccanica

, Volume 51, Issue 12, pp 2933–2948 | Cite as

Gravity in general relativity, attractive and repulsive contributions

  • Ingo Müller
  • Wolf Weiss
50th Anniversary of Meccanica

Abstract

The gravitational equations of Einstein are solved for a sphere filled with a dust gas and floating in infinite empty space. It turns out that the radial acceleration of the gas has negative and positive contributions which may be interpreted as attractive and repulsive gravitational forces respectively. Two cases are considered: the collapse of a gas initially at rest and with uniform density, and the expansion of the gas with initial conditions appropriate to the observed Hubble diagram of Type Ia supernovae. The latter case may be seen as a proposal for a new type of cosmology.

Keywords

General relativity Gravity Cosmology 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Einstein A (1916) Die grundlagen der allgemeinen relativitätstheorie. Annal Phys 354(7):769–822ADSCrossRefzbMATHGoogle Scholar
  2. 2.
    Weinberg S (2008) Cosmology. Oxford University Press, OxfordzbMATHGoogle Scholar
  3. 3.
    Müller I, Weiss W (2015) Expansion of a spherical dust gas—the cosmological conundrum. arXiv:1508.04056
  4. 4.
    Oppenheimer JR, Volkoff GM (1939) On massive neutron cores. Phys Rev 55(4):374ADSCrossRefzbMATHGoogle Scholar
  5. 5.
    Oppenheimer JR, Snyder H (1939) On continued gravitational attraction. Phys Rev 56(5):455ADSCrossRefzbMATHGoogle Scholar
  6. 6.
    Shapiro SL, Teukolsky SA (1983) Black holes, white dwarfs, and neutron stars. The physics of compact objects. Wiley, New YorkCrossRefGoogle Scholar
  7. 7.
    Müller I, Müller WH (2009) Fundamentals of thermodynamics and applications. Springer, BerlinzbMATHGoogle Scholar
  8. 8.
    Hubble E (1929) Relations between distance and radial velocity among extra-galactic nebulae. Proc Natl Acad Sci USA 15(3):168–173ADSCrossRefzbMATHGoogle Scholar
  9. 9.
    Kirshner RP (2004) Hubble’s diagram and cosmic expansion. Proc Natl Acad Sci USA 101(1):8–13ADSCrossRefGoogle Scholar
  10. 10.
    Riess AG et al (2007) New hubble space telescope discoveries of Type Ia supernovae at z1: narrowing constraints on the early behaviour of dark energy. Astrophys J 659:98Y121ADSCrossRefGoogle Scholar
  11. 11.
    Amanullah R et al (2010) Spectra and HST light curves of six type Ia supernovae at 0.511 z 1.12 and the union 2 compilation. Astronphys J 716:712–738ADSCrossRefGoogle Scholar
  12. 12.
    Hicken M (2009) Improved dark energy constraints from  100 new CfA supernova type Ia light curves. Astrophys J 700(2):1097ADSCrossRefGoogle Scholar
  13. 13.
    Suzuki et al (2012) The hubble space telescope cluster supernova survey. V. Improving the dark-energy constraints above z1 and building an early-type-hosted supernova-sample. Astrophys J 746:85Google Scholar
  14. 14.
    Perlmutter S (2003) Supernovae, dark energy, and the accelerating universe. Phys Today 56(4):53–62CrossRefGoogle Scholar
  15. 15.
    Chavez R (2014) Constraining the parameter space of the dark energy equation pf state using alternative cosmic tracers. Doctoral Dissertation. Instituto Nacional de Astrofísica, Óptica y Electrónica, Tonantzintla, Puebla, MéxicoGoogle Scholar
  16. 16.
    Friedmann A (1922) Über die Krümmung des Raumes. Z Phys 10:S.377Google Scholar
  17. 17.
    Friedmann A (1924) Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des Raumes. Z Phys 21(1):326ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Einstein A (ed) (1922) The general theory of relativity (continued). In: The meaning of relativity. Princeton University PressGoogle Scholar
  19. 19.
    Einstein A (ed) (1945) Appendix for the second edition. On the cosmologic problem. In: The meaning of relativity, 2nd edn. Princeton University PressGoogle Scholar
  20. 20.
    Colless M et al (2001) The 2dF galaxy redshift survey: spectra and redshifts. Mon Not R Astron Soc 328:1039–1063ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.TU BerlinBerlinGermany

Personalised recommendations