, Volume 52, Issue 4–5, pp 781–793 | Cite as

A variable stiffness joint with superelastic material

  • G. A. NaselliEmail author
  • L. Rimassa
  • M. Zoppi
  • R. Molfino


The aim of this paper is to provide the design of a variable stiffness joint able to perform large rotations without undergoing plastic strain. The joint comprises two leaf springs of variable length, allowing to adjust the stiffness of the joint according to the desired performance. Large rotations are achieved by employing superelastic material for the leaf springs, instead of common linear elastic material. The behaviour of the joint has been investigated by means of finite element analyses; in addition, the first attempt to develop a simple mathematical model for the superelastic material as alternative to finite element method is described.


Superelasticity Variable stiffness joint Elastic line equation Elastica Theory 


  1. 1.
    Choi J, Park S, Lee W, Kang S (2008), Design of a robot joint with variable stiffness. In: IEEE international conference on robotics and automation, Pasadena, CA, USA, 19–23 May 2008Google Scholar
  2. 2.
    Trease BP, Moon Y, Kota S (2005) Design of large-displacement compliant joints. Trans ASME 127:788–798CrossRefGoogle Scholar
  3. 3.
    Wolf S, Eiberger O, Hirzinger G (2011), The DLR FSJ: energy based design of a variable stiffness joint. In: IEEE international conference on robotics and automation, Shanghai, ChinaGoogle Scholar
  4. 4.
    Wolf S, Hirzinger G (2008) A new variable stiffness design: Matching requirements of the next robot generation. In: IEEE international conference on robotics and automation, Pasadena, CA, USAGoogle Scholar
  5. 5.
    Van Ham R, Sugar TG, Vanderborght B, Hollander KW, Lefeber D (2009) Compliant actuator designs. In: IEEE robotics and automation magazine, pp 81–94Google Scholar
  6. 6.
    Choi J, Hong S, Lee W, Kang S (2009) A variable stiffness joint using leaf springs for robot manipulators. In: IEEE international conference on robotics and automation, Kobe, JapanGoogle Scholar
  7. 7.
    Auricchio F, Taylor RL (1997) Shape-memory alloys: modelling and numerical simulations of the finite-strain superelastic behavior. Comput Methods Appl Mech Eng 143:175–194ADSCrossRefzbMATHGoogle Scholar
  8. 8.
    Auricchio F, Sacco E (1999) A Temperature-Dependent beam for shape-memory alloys: constitutive modeling, finite-element implementation and numerical simulations. Comput. Methods Appl. Mech. Engrg. 174:171–190ADSCrossRefzbMATHGoogle Scholar
  9. 9.
    Rebelo N, Gong XY, Hall A, Pelton AR, Duerig TW (2003) Finite element analysison the cyclic properties of superelastic nitinol. In: Proceedings of the international conference on Shape Memory and Superelastic Technologies, SMSTGoogle Scholar
  10. 10.
    Nemat-Nasser S, Guo W (2006) Superelastic and cyclic response of NiTi SMA at various strain rates and temperature. Mech Mater 38:463–474CrossRefGoogle Scholar
  11. 11.
    Zhang XP, Liu HY, Yuan B, Zhang YP (2008) Superelasticity decay of porous NiTi shape memory alloys under cyclic strain-controlled fatigue conditions. Mater Sci Eng A 481:170–173CrossRefGoogle Scholar
  12. 12.
    Dumont G, Khl C (2005) Finite element simulation for design optimization of shape memory alloy spring actuators. Eng Comput Int J Comput Aided Eng Softw 22(7):835–848CrossRefzbMATHGoogle Scholar
  13. 13.
    Jayender J, Patel RV, Nikumb S, Ostojic M (2008) Modeling and control of shape memory alloy actuators. IEEE Trans Control Syst Technol 16(2):279Google Scholar
  14. 14.
    Majima S, Kodama K, Hasegawa T (2001) Modeling of shape memory alloy actuator and tracking control system with the model. IEEE Trans Control Syst Technol 9(1):54–59Google Scholar
  15. 15.
    Sreekumar M, Singaperumal M, Nagarajan T, Zoppi M, Molfino R (2007) Recent advances in nonlinear control technologies for shape memory alloy actuators. Int J Zhejiang Univ Sci A 8(5):818–829CrossRefGoogle Scholar
  16. 16.
    Sreekumar M, Singaperumal M, Nagarajan T, Zoppi M, Molfino R (2007) Critical review of current trends in shape memory alloy actuators for intelligent robots, 2007. Int J Ind Robot 34(4):285–294CrossRefGoogle Scholar
  17. 17.
    Sreekumar M, Singaperumal M, Nagarajan T, Zoppi M, Molfino R (2006), A compliant miniature parallel manipulator with shape memory alloy actuators. In: Proceedings of IEEE international conference on industrial technology (ICIT2006), Mumbai, IndiaGoogle Scholar
  18. 18.
    Gilbert HB, Rucker DC, Webster III RJ (2013), Concentric tube robots: the state of the art and future directions. In: Int Symp Robot ResGoogle Scholar
  19. 19.
    Auricchio F (2001) A Robust integration-algorithm for a finite-strain shape-memory-alloy. Int J Plast 17:971–990CrossRefzbMATHGoogle Scholar
  20. 20.
    Chucheepsakul S, Buncharoen S, Wang CM (1994) Large deflection of beams under moment gradient. Journal of Engineering Mechanics 120:1848–1860CrossRefGoogle Scholar
  21. 21.
    Howell LL (2001) Compliant mechanisms. Wiley, USAGoogle Scholar
  22. 22.
    Eshghinejad A, Elahinia M (2015) Exact solution for bending of shape memory alloy beams. Mech Adv Mater Struct 22(10):829–838CrossRefGoogle Scholar
  23. 23.
    ANSYS®,  Release 14.0, ANSYS, IncGoogle Scholar
  24. 24.
    MATLAB®  Release 2014b, The MathWorks, IncGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • G. A. Naselli
    • 1
    Email author
  • L. Rimassa
    • 2
  • M. Zoppi
    • 1
  • R. Molfino
    • 1
  1. 1.DIMEUniversity of GenovaGenovaItaly
  2. 2.Ansaldo EnergiaGenovaItaly

Personalised recommendations