, Volume 52, Issue 3, pp 563–576 | Cite as

Clinical assessment of intraventricular blood transport in patients undergoing cardiac resynchronization therapy

  • Lorenzo Rossini
  • Pablo Martinez-Legazpi
  • Yolanda Benito
  • Candelas Pérez del Villar
  • Ana Gonzalez-Mansilla
  • Alicia Barrio
  • María-Guadalupe Borja
  • Raquel Yotti
  • Andrew M. Kahn
  • Shawn C. Shadden
  • Francisco Fernández-Avilés
  • Javier Bermejo
  • Juan C. del Álamo
Advances in Biomechanics: from foundations to applications


In the healthy heart, left ventricular (LV) filling generates different flow patterns which have been proposed to optimize blood transport by coupling diastole and systole. This work presents a novel image-based method to assess how different flow patterns influence LV blood transport in patients undergoing cardiac resynchronization therapy (CRT). Our approach is based on solving the advection equation for a passive scalar field from time-resolved blood velocity fields. Imposing time-varying inflow boundary conditions for the scalar field provides a straightforward method to distinctly track the transport of blood entering the LV in the different filling waves of a given cardiac cycle, as well as the transport barriers which couple filling and ejection. We applied this method to analyze flow transport in a group of patients with implanted CRT devices and a group of healthy volunteers. Velocity fields were obtained using echocardiographic color Doppler velocimetry, which provides two-dimensional time-resolved flow maps in the apical long axis three-chamber view of the LV. In the patients under CRT, the device programming was varied to analyze flow transport under different values of the atrioventricular conduction delay, and to model tachycardia (100 bpm). Using this method, we show how CRT influences the transit of blood inside the left ventricle, contributes to conserving kinetic energy, and favors the generation of hemodynamic forces that accelerate blood in the direction of the LV outflow tract. These novel aspects of ventricular function are clinically accessible by quantitative analysis of color-Doppler echocardiograms.


Blood transport Intracardiac flow Intraventricular flow patterns Blood filling waves Cardiac resynchronization therapy Echocardiography 



This study was supported by grants, PI12/02885, PIS09/02603, RD12/0042 (Red de Investigación Cardiovascular), and CM12/00273 (to CPV) from the Instituto de Salud Carlos III –Ministerio de Economía y Competitividad, Spain, and NIH grant 1R21 HL108268-01 (to JCA and AMK).

Compliance with ethical standards

Conflict of interest



  1. 1.
    Guha K, McDonagh T (2013) Heart failure epidemiology: European perspective. Curr Cardiol Rev 9(2):123–127CrossRefGoogle Scholar
  2. 2.
    Farwell D, Patel NR, Hall A, Ralph S, Sulke AN (2000) How many people with heart failure are appropriate for biventricular resynchronization? Eur Heart J 21(15):1246–1250. doi: 10.1053/euhj.1999.1985 CrossRefGoogle Scholar
  3. 3.
    Kass DA (2005) Cardiac resynchronization therapy. J Cardiovasc Electrophysiol 16(Suppl 1):S35–S41. doi: 10.1111/j.1540-8167.2005.50136.x CrossRefGoogle Scholar
  4. 4.
    Xiao HB, Roy C, Fujimoto S, Gibson DG (1996) Natural history of abnormal conduction and its relation to prognosis in patients with dilated cardiomyopathy. Int J Cardiol 53(2):163–170CrossRefGoogle Scholar
  5. 5.
    Xiao HB, Brecker SJ, Gibson DG (1992) Effects of abnormal activation on the time course of the left ventricular pressure pulse in dilated cardiomyopathy. Br Heart J 68(4):403–407CrossRefGoogle Scholar
  6. 6.
    Littmann L, Symanski JD (2000) Hemodynamic implications of left bundle branch block. J Electrocardiol 33(Suppl):115–121CrossRefGoogle Scholar
  7. 7.
    Saxon LA, Kerwin WF, Cahalan MK, Kalman JM, Olgin JE, Foster E, Schiller NB, Shinbane JS, Lesh MD, Merrick SH (1998) Acute effects of intraoperative multisite ventricular pacing on left ventricular function and activation/contraction sequence in patients with depressed ventricular function. J Cardiovasc Electrophysiol 9(1):13–21CrossRefGoogle Scholar
  8. 8.
    Kerwin WF, Botvinick EH, O’Connell JW, Merrick SH, DeMarco T, Chatterjee K, Scheibly K, Saxon LA (2000) Ventricular contraction abnormalities in dilated cardiomyopathy: effect of biventricular pacing to correct interventricular dyssynchrony. J Am Coll Cardiol 35(5):1221–1227CrossRefGoogle Scholar
  9. 9.
    Bristow MR, Saxon LA, Boehmer J, Krueger S, Kass DA, De Marco T, Carson P, DiCarlo L, DeMets D, White BG, DeVries DW, Feldman AM, Investigators C (2004) Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med 350(21):2140–2150CrossRefGoogle Scholar
  10. 10.
    Pedrizzetti G, Domenichini F (2005) Nature optimizes the swirling flow in the human left ventricle. Phy Rev Lett 95(10):108101ADSCrossRefGoogle Scholar
  11. 11.
    Gorcsan J, 3rd, Abraham T, Agler DA, Bax JJ, Derumeaux G, Grimm RA, Martin R, Steinberg JS, Sutton MS, Yu CM, American Society of Echocardiography Dyssynchrony Writing G, American Society of Echocardiography Dyssynchrony Writing G, Heart Rhythm S (2008) Echocardiography for cardiac resynchronization therapy: recommendations for performance and reporting—a report from the American Society of Echocardiography Dyssynchrony Writing Group endorsed by the Heart Rhythm Society. J Am Soc Echocardiogr 21(3):191–213. doi: 10.1016/j.echo.2008.01.003
  12. 12.
    Stanton T, Hawkins NM, Hogg KJ, Goodfield NE, Petrie MC, McMurray JJ (2008) How should we optimize cardiac resynchronization therapy? Eur Heart J 29(20):2458–2472. doi: 10.1093/eurheartj/ehn380 CrossRefGoogle Scholar
  13. 13.
    Pavlopoulos H, Nihoyannopoulos P (2010) Recent advances in cardiac resynchronization therapy: echocardiographic modalities, patient selection, optimization, non-responders—all you need to know for more efficient CRT. Int J Cardiovasc Imaging 26(2):177–191. doi: 10.1007/s10554-009-9523-5 CrossRefGoogle Scholar
  14. 14.
    Waggoner AD, De Las Fuentes L, Faddis MN, Gleva MJ, Spence KE, Davila-Roman VG (2008) Left ventricular diastolic filling prior to cardiac resynchronization therapy: implications for atrioventricular delay programming. Pacing Clin Electrophysiol 31(7):838–844. doi: 10.1111/j.1540-8159.2008.01097.x CrossRefGoogle Scholar
  15. 15.
    Zhang Q, Fung JWH, Chan YS, Chan HCK, Lin H, Chan S, Yu CM (2008) The role of repeating optimization of atrioventricular interval during interim and long-term follow-up after cardiac resynchronization therapy. Int J Cardiol 124(2):211–217. doi: 10.1016/j.ijcard.2007.02.043 CrossRefGoogle Scholar
  16. 16.
    Auricchio A, Stellbrink C, Sack S, Block M, Vogt J, Bakker P, Huth C, Schondube F, Wolfhard U, Bocker D, Krahnefeld O, Kirkels H, Pacing Therapies in Congestive H (2002) Long-term clinical effect of hemodynamically optimized cardiac resynchronization therapy in patients with heart failure and ventricular conduction delay. J Am Coll Cardiol 39(12):2026–2033CrossRefGoogle Scholar
  17. 17.
    Sawhney NS, Waggoner AD, Garhwal S, Chawla MK, Osborn J, Faddis MN (2004) Randomized prospective trial of atrioventricular delay programming for cardiac resynchronization therapy. Heart Rhythm 1(5):562–567. doi: 10.1016/j.hrthm.2004.07.006 CrossRefGoogle Scholar
  18. 18.
    Kedia N, Ng K, Apperson-Hansen C, Wang CH, Tchou P, Wilkoff BL, Grimm RA (2006) Usefulness of atrioventricular delay optimization using Doppler assessment of mitral inflow in patients undergoing cardiac resynchronization therapy. Am J Cardiol 98(6):780–785CrossRefGoogle Scholar
  19. 19.
    Kilner PJ, Yang GZ, Wilkes AJ, Mohiaddin RH, Firmin DN, Yacoub MH (2000) Asymmetric redirection of flow through the heart. Nature 404(6779):759–761ADSCrossRefGoogle Scholar
  20. 20.
    Richter YEE (2006) Cardiology is flow. Circulation 113(23):2679–2682CrossRefGoogle Scholar
  21. 21.
    Yang GZ, Merrifield R, Masood S, Kilner PJ (2007) Flow and myocardial interaction: an imaging perspective. Philos Trans R Soc Lond B Biol Sci 362(1484):1329–1341. doi: 10.1098/rstb.2007.2119 CrossRefGoogle Scholar
  22. 22.
    Bolger AF, Heiberg E, Karlsson M, Wigstrom L, Engvall J, Sigfridsson A, Ebbers T, Kvitting JP, Carlhall CJ, Wranne B (2007) Transit of blood flow through the human left ventricle mapped by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 9(5):741–747CrossRefGoogle Scholar
  23. 23.
    Fredriksson AG, Zajac J, Eriksson J, Dyverfeldt P, Bolger AF, Ebbers T, Carlhall CJ (2011) 4-D blood flow in the human right ventricle. Am J Physiol Heart Circ Physiol 301(6):H2344–H2350. doi: 10.1152/ajpheart.00622.2011 CrossRefGoogle Scholar
  24. 24.
    Eriksson J, Dyverfeldt P, Engvall J, Bolger AF, Ebbers T, Carlhall CJ (2011) Quantification of presystolic blood flow organization and energetics in the human left ventricle. Am J Physiol Heart Circ Physiol 300(6):H2135–H2141. doi: 10.1152/ajpheart.00993.2010 CrossRefGoogle Scholar
  25. 25.
    Eriksson J, Carlhall CJ, Dyverfeldt P, Engvall J, Bolger AF, Ebbers T (2010) Semi-automatic quantification of 4D left ventricular blood flow. J Cardiovasc Magn Reson 12:9. doi: 10.1186/1532-429X-12-9 CrossRefGoogle Scholar
  26. 26.
    Eriksson J, Bolger AF, Ebbers T, Carlhall CJ (2013) Four-dimensional blood flow-specific markers of LV dysfunction in dilated cardiomyopathy. Eur Heart J Cardiovasc Imaging 14(5):417–424. doi: 10.1093/ehjci/jes159 CrossRefGoogle Scholar
  27. 27.
    Wigstrom L, Ebbers T, Fyrenius A, Karlsson M, Engvall J, Wranne B, Bolger AF (1999) Particle trace visualization of intracardiac flow using time-resolved 3D phase contrast MRI. Magn Reson Med 41(4):793–799CrossRefGoogle Scholar
  28. 28.
    Hendabadi S, Bermejo J, Benito Y, Yotti R, Fernandez-Aviles F, Del Alamo JC, Shadden SC (2013) Topology of blood transport in the human left ventricle by novel processing of Doppler echocardiography. Ann Biomed Eng 41(12):2603–2616. doi: 10.1007/s10439-013-0853-z CrossRefGoogle Scholar
  29. 29.
    Benito Y, Bermejo J, Alhama M, Yotti R, Pérez del Villar C, Martínez-Legazpi P, González-Mansilla A, Barrio A, Fernández-Avilés F, del Álamo JC (2012) Heart rate and AV delay modify left ventricular filling vortex properties. Circulation 126:A18099Google Scholar
  30. 30.
    Goliasch G, Goscinska-Bis K, Caracciolo G, Nakabo A, Smolka G, Pedrizzetti G, Narula J, Sengupta PP (2013) CRT improves LV filling dynamics: insights from echocardiographic particle imaging velocimetry. JACC Cardiovasc Imaging 6(6):704–713. doi: 10.1016/j.jcmg.2013.04.004 CrossRefGoogle Scholar
  31. 31.
    Pedrizzetti G, Martiniello AR, Bianchi V, D’Onofrio A, Caso P, Tonti G (2015) Changes in electrical activation modify the orientation of left ventricular flow momentum: novel observations using echocardiographic particle image velocimetry. Eur Heart J Cardiovasc Imaging. doi: 10.1093/ehjci/jev137 Google Scholar
  32. 32.
    Bermejo J, Benito Y, Alhama M, Yotti R, Martinez-Legazpi P, Pérez del Villar C, Pérez-David E, González-Mansilla A, Santa-Marta C, Barrio A, Fernandez-Aviles F, del Alamo JC (2014) Intraventricular vortex properties in non-ischemic dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 306(5):H718–H729. doi: 10.1152/ajpheart.00697.2013 CrossRefGoogle Scholar
  33. 33.
    Garcia D, Del Alamo JC, Tanne D, Yotti R, Cortina C, Bertrand E, Antoranz JC, Perez-David E, Rieu R, Fernandez-Aviles F, Bermejo J (2010) Two-dimensional intraventricular flow mapping by digital processing conventional color-Doppler echocardiography images. IEEE Trans Med Imaging 29(10):1701–1713. doi: 10.1109/tmi.2010.2049656 CrossRefGoogle Scholar
  34. 34.
    Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28 (1):1–39 e14. doi: 10.1016/j.echo.2014.10.003
  35. 35.
    Bermejo J, Martinez-Legazpi P, del Alamo JC (2015) The Clinical Assessment of Intracardiac Flows. Ann Rev Fluid Mech 47:315–342. doi: 10.1146/annurev-fluid-010814-014728 ADSCrossRefGoogle Scholar
  36. 36.
    Tarbell JM (2003) Mass transport in arteries and the localization of atherosclerosis. Annu Rev Biomed Eng 5:79–118. doi: 10.1146/annurev.bioeng.5.040202.121529 CrossRefGoogle Scholar
  37. 37.
    Rossini L, Martinez-Legazpi P, Vu V, Fernández-Friera L, Pérez del Villar C, Rodríguez-López S, Benito Y, Borja M-G, Pastor-Escuredo D, Yotti R, Ledesma-Carbayo MJ, Kahn AM, Ibáñez B, Fernández-Avilés F, May-Newman K, Bermejo J, del Alamo JC (2015) A clinical method for mapping and quantifying blood stasis in the left ventricle. J Biomech. doi: 10.1016/j.jbiomech.2015.11.049
  38. 38.
    Zwanenburg JJ, Gotte MJ, Kuijer JP, Hofman MB, Knaapen P, Heethaar RM, van Rossum AC, Marcus JT (2005) Regional timing of myocardial shortening is related to prestretch from atrial contraction: assessment by high temporal resolution MRI tagging in humans. Am J Physiol Heart Circ Physiol 288(2):H787–H794CrossRefGoogle Scholar
  39. 39.
    Gharib M, Rambod E, Kheradvar A, Sahn DJ, Dabiri JO (2006) Optimal vortex formation as an index of cardiac health. Proc Natl Acad Sci USA 103(16):6305–6308. doi: 10.1073/pnas.0600520103 ADSCrossRefGoogle Scholar
  40. 40.
    Martinez-Legazpi P, Bermejo J, Benito Y, Yotti R, Perez Del Villar C, Gonzalez-Mansilla A, Barrio A, Villacorta E, Sanchez PL, Fernandez-Aviles F, del Alamo JC (2014) Contribution of the diastolic vortex ring to left ventricular filling. J Am Coll Cardiol 64(16):1711–1721. doi: 10.1016/j.jacc.2014.06.1205 CrossRefGoogle Scholar
  41. 41.
    Seo JH, Mittal R (2013) Effect of diastolic flow patterns on the function of the left ventricle. Phys Fluids 25:110801ADSCrossRefGoogle Scholar
  42. 42.
    Watanabe H, Sugiura S, Hisada T (2008) The looped heart does not save energy by maintaining the momentum of blood flowing in the ventricle. Am J Physiol Heart Circ Physiol 294(5):H2191–H2196. doi: 10.1152/ajpheart.00041.2008 CrossRefGoogle Scholar
  43. 43.
    Thompson RB, McVeigh ER (2003) Fast measurement of intracardiac pressure differences with 2D breath-hold phase-contrast MRI. Magn Reson Med 49(6):1056–1066CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Lorenzo Rossini
    • 1
  • Pablo Martinez-Legazpi
    • 1
    • 2
  • Yolanda Benito
    • 2
  • Candelas Pérez del Villar
    • 2
  • Ana Gonzalez-Mansilla
    • 2
  • Alicia Barrio
    • 2
  • María-Guadalupe Borja
    • 1
  • Raquel Yotti
    • 2
  • Andrew M. Kahn
    • 3
  • Shawn C. Shadden
    • 4
  • Francisco Fernández-Avilés
    • 2
    • 5
  • Javier Bermejo
    • 2
    • 5
  • Juan C. del Álamo
    • 1
    • 6
  1. 1.Mechanical and Aerospace Engineering DepartmentUniversity of California San DiegoLa JollaUSA
  2. 2.Department of Cardiology, Instituto de Investigación Sanitaria Gregorio MarañónHospital General Universitario Gregorio MarañónMadridSpain
  3. 3.Department of MedicineUniversity of California San DiegoLa JollaUSA
  4. 4.Mechanical Engineering DepartmentUniversity of California BerkeleyBerkeleyUSA
  5. 5.Facultad de MedicinaUniversidad Complutense de MadridMadridSpain
  6. 6.Institute for Engineering in MedicineUniversity of California San DiegoLa JollaUSA

Personalised recommendations