Advertisement

Meccanica

, Volume 51, Issue 2, pp 429–441 | Cite as

Neighborhood influences on stress and strain partitioning in dual-phase microstructures

An investigation on synthetic polycrystals with a robust spectral-based numerical method
  • Martin Diehl
  • Pratheek Shanthraj
  • Philip Eisenlohr
  • Franz Roters
Computational Micromechanics of Materials

Abstract

The mechanical response of multiphase metallic materials is governed by the strain and stress partitioning behavior among their phases, crystals, and subgrains. Despite knowledge about the existence of these complex and long-ranging interactions, the experimental characterization of such materials is often limited to surface observations of microstructure evolution and strain partitioning, i.e. ignoring the influence of the underlying features. Hence, for the interpretation of the observed surface behavior it is imperative to understand how it might be influenced by the subsurface microstructure. In the present study, we therefore systematically change the subsurface microstructure of synthetic dual-phase polycrystals and investigate the altered response of a 2D region of interest. The series of high-resolution crystal plasticity simulations are conducted with a fast and efficient spectral-based iterative scheme for calculating the mechanical response of complex crystalline materials. To overcome the slow convergence of the conventional spectral-based solver when dealing with heterogeneous materials of large contrast in stiffness (or strength), direct and mixed variational conditions for mechanical equilibrium and strain compatibility have been formulated such that they can be combined with a general class of non-linear solution methods. The different solution techniques have been implemented into DAMASK, the Düsseldorf Advanced Material Simulation Kit, and the ones showing the best performance are used in this study. The results show that the subsurface microstructure has a dominant influence on the observed stress and strain partitioning. Additionally, it can be seen that the zone of influence increases with increasing heterogeneity of the microstructure.

Keywords

Crystal plasticity Dual-phase steel Spectral method Voronoi tessellation Stress and strain partitioning 

Notes

Acknowledgments

This research was carried out under Project Number M 41.2.10410 in the framework of the Research Program of the Materials innovation institute (M2i) (www.m2i.nl).

References

  1. 1.
    Brisard S, Dormieux L (2010) FFT-based methods for the mechanics of composites: a general variational framework. Comput Mater Sci 49(3):663–671. doi: 10.1016/j.commatsci.2010.06.009 CrossRefGoogle Scholar
  2. 2.
    Chen P, Ghassemi-Armaki H, Kumar S, Bower A, Bhat S, Sadagopan S (2014) Microscale-calibrated modeling of the deformation response of dual-phase steels. Acta Mater 65:133–149. doi: 10.1016/j.actamat.2013.11.036 CrossRefGoogle Scholar
  3. 3.
    Eisenlohr P, Diehl M, Lebensohn RA, Roters F (2013) A spectral method solution to crystal elasto-viscoplasticity at finite strains. Int J Plast 46:37–53. doi: 10.1016/j.ijplas.2012.09.012 CrossRefGoogle Scholar
  4. 4.
    Eyre DJ, Milton GW (1999) A fast numerical scheme for computing the response of composites using grid refinement. Eur Phys J Appl Phys 6(1):41–47. doi: 10.1051/epjap:1999150 ADSCrossRefGoogle Scholar
  5. 5.
    Hutchinson JW (1976) Bounds and self-consistent estimates for creep of polycrystalline materials. Proc R Soc A 348:101–127. doi: 10.1098/rspa.1976.0027 ADSCrossRefzbMATHGoogle Scholar
  6. 6.
    Lahellec N, Michel JC, Moulinec H, Suquet P (2001) Analysis of inhomogeneous materials at large strains using fast Fourier transforms. In: Miehe C (ed) IUTAM symposium on computational mechanics of solid materials at large strains, vol 108. Kluwer, Dordrecht, pp 247–258. doi: 10.1007/978-94-017-0297-3_22
  7. 7.
    Landron C, Bouaziz O, Maire E, Adrien J (2013) Experimental investigation of void coalescence in a dual phase steel using X-ray tomography. Acta Mater 61(18):6821–6829. doi: 10.1016/j.actamat.2013.07.058 CrossRefGoogle Scholar
  8. 8.
    Lebensohn RA (2001) N-site modeling of a 3D viscoplastic polycrystal using fast Fourier transform. Acta Mater 49(14):2723–2737. doi: 10.1016/S1359-6454(01)00172-0 CrossRefGoogle Scholar
  9. 9.
    Lebensohn RA, Castelnau O, Brenner R, Gilormini P (2005) Study of the antiplane deformation of linear 2-D polycrystals with different microstructures. Int J Solids Struct 42(20):5441–5459. doi: 10.1016/j.ijsolstr.2005.02.051 CrossRefzbMATHGoogle Scholar
  10. 10.
    Lebensohn RA, Rollett AD, Suquet P (2011) Fast fourier transform-based modeling for the determination of micromechanical fields in polycrystals. JOM 63(3):13–18. doi: 10.1007/s11837-011-0037-y CrossRefGoogle Scholar
  11. 11.
    Lebensohn RA, Kanjarla AK, Eisenlohr P (2012) An elasto-viscoplastic formulation based on fast Fourier transforms for the prediction of micromechanical fields in polycrystalline materials. Int J Plast 32–33:59–69. doi: 10.1016/j.ijplas.2011.12.005 CrossRefGoogle Scholar
  12. 12.
    Lefebvre G, Sinclair CW, Lebensohn RA, Mithieux JD (2012) Accounting for local interactions in the prediction of roping of ferritic stainless steel sheets. Model Simul Mater Sci Eng 20(2):024,008. doi: 10.1088/0965-0393/20/2/024008 CrossRefGoogle Scholar
  13. 13.
    Michel JC, Moulinec H, Suquet P (2001) A computational scheme for linear and non-linear composites with arbitrary phase contrast. Int J Numer Methods Eng 52(12):139–160. doi: 10.1002/nme.275 CrossRefGoogle Scholar
  14. 14.
    Monchiet V, Bonnet G (2012) A polarization-based FFT iterative scheme for computing the effective properties of elastic composites with arbitrary contrast. Int J Numer Methods Eng 89(11):1419–1436. doi: 10.1002/nme.3295 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Moulinec H, Suquet P (1994) A fast numerical method for computing the linear and nonlinear properties of composites. Comptes rendus de l’Académie des Sciences Série II, Mécanique, Physique, Chimie, Astronomie 318:1417–1423zbMATHGoogle Scholar
  16. 16.
    Oosterlee CW, Washio T (2000) Krylov subspace acceleration of nonlinear multigrid with application to recirculating flows. SIAM J Sci Comput 21(5):1670–1690. doi: 10.1137/S1064827598338093 MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Ramazani A, Mukherjee K, Quade H, Prahl U, Bleck W (2013) Correlation between 2D and 3D flow curve modelling of DP steels using a microstructure-based RVE approach. Mater Sci Eng A 560:129–139. doi: 10.1016/j.msea.2012.09.046 CrossRefGoogle Scholar
  18. 18.
    Ramazani A, Ebrahimi Z, Prahl U (2014) Study the effect of martensite banding on the failure initiation in dual-phase steel. Comput Mater Sci 87:241–247. doi: 10.1016/j.commatsci.2014.01.051 CrossRefGoogle Scholar
  19. 19.
    Roters F, Eisenlohr P, Hantcherli L, Tjahjanto DD, Bieler TR, Raabe D (2010) Overview of constitutive laws, kinematics, homogenization, and multiscale methods in crystal plasticity finite element modeling: theory, experiments, applications. Acta Mater 58:1152–1211. doi: 10.1016/j.actamat.2009.10.058 CrossRefGoogle Scholar
  20. 20.
    Shanthraj P, Eisenlohr P, Diehl M, Roters F (2015) Numerically robust spectral methods for crystal plasticity simulations of heterogeneous materials. Int J Plast 66:31–45. doi: 10.1016/j.ijplas.2014.02.006 CrossRefGoogle Scholar
  21. 21.
    Suquet P, Moulinec H, Castelnau O, Montagnat M, Lahellec N, Grennerat F, Duval P, Brenner R (2012) Multi-scale modeling of the mechanical behavior of polycrystalline ice under transient creep. In: Procedia IUTAM: IUTAM symposium on linking scales in computation: from microstructure to macroscale properties 3, pp 64–78. doi: 10.1016/j.piutam.2012.03.006
  22. 22.
    Tasan CC, Diehl M, Yan D, Zambaldi C, Shanthraj P, Roters F, Raabe D (2014) Integrated experimental-numerical analysis of stress and strain partitioning in multi-phase alloys. Acta Mater 81:386–400. doi: 10.1016/j.actamat.2014.07.071 CrossRefGoogle Scholar
  23. 23.
    Tasan CC, Hoefnagels JPM, Diehl M, Yan D, Roters F, Raabe D (2014) Strain localization and damage in dual phase steels investigated by coupled in-situ deformation experiments-crystal plasticity simulations. Int J Plast 63:198–210. doi: 10.1016/j.ijplas.2014.06.004 CrossRefGoogle Scholar
  24. 24.
    Tasan CC, Diehl M, Yan D, Bechtold M, Roters F, Schemmann L, Zheng C, Peranio N, Ponge D, Koyama M, Tsuzaki K, Raabe D (2015) An overview of dual-phase steels: advances in microstructure-oriented processing and micromechanically guided design. Ann Rev Mater Res 45:391–431. doi: 10.1146/annurev-matsci-070214-021103 ADSCrossRefGoogle Scholar
  25. 25.
    Tjahjanto DD, Turteltaub S, Suiker ASJ (2008) Crystallographically based model for transformation-induced plasticity in multiphase carbon steels. Contin Mech Thermodyn 19(7):399–422. doi: 10.1007/s00161-007-0061-x ADSCrossRefzbMATHGoogle Scholar
  26. 26.
    Zambaldi C, Raabe D (2010) Plastic anisotropy of \(\gamma \)-TiAl revealed by axisymmetric indentation. Acta Mater 58(9):3516–3530. doi: 10.1016/j.actamat.2010.02.025 CrossRefGoogle Scholar
  27. 27.
    Zambaldi C, Yang Y, Bieler TR, Raabe D (2012) Orientation informed nanoindentation of \(\alpha \)-titanium: indentation pileup in hexagonal metals deforming by prismatic slip. J Mater Res 27(1):356–367. doi: 10.1557/jmr.2011.334 ADSCrossRefGoogle Scholar
  28. 28.
    Zeghadi A, Forest S, Gourgues AF, Bouaziz O (2007a) Ensemble averaging stress–strain fields in polycrystalline aggregates with a constrained surface microstructure—Part 2: crystal plasticity. Philos Mag 87(8–9):1425–1446. doi: 10.1080/14786430601009517
  29. 29.
    Zeghadi A, N’guyen F, Forest S, Gourgues AF, Bouaziz O (2007b) Ensemble averaging stress–strain fields in polycrystalline aggregates with a constrained surface microstructure—Part 1: anisotropic elastic behaviour. Philos Mag 87(8–9):1401–1424. doi: 10.1080/14786430601009509
  30. 30.
    Zeman J, Vondřejc J, Novák J, Marek I (2010) Accelerating a FFT-based solver for numerical homogenization of periodic media by conjugate gradients. J Comput Phys 229(21):8065–8071. doi: 10.1016/j.jcp.2010.07.010 ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Martin Diehl
    • 1
  • Pratheek Shanthraj
    • 1
    • 2
  • Philip Eisenlohr
    • 3
  • Franz Roters
    • 1
  1. 1.Microstructure Physics and Alloy DesignMax-Planck-Institut für Eisenforschung GmbHDüsseldorfGermany
  2. 2.Aachen Institute for Advanced Study in Computational Engineering ScienceRWTH Aachen UniversityAachenGermany
  3. 3.Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingUSA

Personalised recommendations