, Volume 49, Issue 9, pp 2181–2187 | Cite as

On the six-field model of fluids based on extended thermodynamics

  • Takashi Arima
  • Tommaso Ruggeri
  • Masaru SugiyamaEmail author
  • Shigeru Taniguchi
New Trends in Fluid and Solid Mechanical Models


We study the six-field model of fluids (ET6) derived from extended thermodynamics. The six fields are the mass density, the velocity, the temperature, and the dynamic pressure (nonequilibrium pressure). We present the basic system of field equations of ET6. And we elucidate its characteristic features through the studies of the singular limit from polyatomic to monatomic rarefied gases, of hydrodynamic fluctuation, and of a hard-sphere system. Open problems remained in ET6 at present are also pointed out.


Six-field model of fluids Extended thermodynamics Dynamic pressure Singular limit Hydrodynamic fluctuation Hard-sphere system 



This work was partially supported by Japan Society of Promotion of Science (JSPS) No.~25390150 (M.S.) and No.~24760055 (S.T.) and by National Group of Mathematical Physics GNFM-INdAM (T.R.).


  1. 1.
    Müller I, Ruggeri T (1998) Rational extended thermodynamics, 2nd edn. Springer, New YorkCrossRefzbMATHGoogle Scholar
  2. 2.
    de Groot SR, Mazur P (1963) Non-equilibrium thermodynamics. North-Holland, AmsterdamGoogle Scholar
  3. 3.
    Arima T, Taniguchi S, Ruggeri T, Sugiyama M (2012) Extended thermodynamics of dense gases. Contin Mech Thermodyn 24:271–292CrossRefzbMATHADSGoogle Scholar
  4. 4.
    Arima T, Sugiyama M (2013) Characteristic features of extended thermodynamics of dense gases. Atti della Accademia Peloritana dei Pericolanti. 91(Suppl 1):A1–A15MathSciNetGoogle Scholar
  5. 5.
    Landau LD, Lifshitz EM (1958) Fluid mechanics. Pergamon Press, LondonGoogle Scholar
  6. 6.
    Ikenberry E, Truesdell C (1956) On the pressure and the flux of energy in a gas according to Maxwell’s kinetic theory. J Ration Mech Anal 5:1–54zbMATHMathSciNetGoogle Scholar
  7. 7.
    Arima T, Taniguchi S, Ruggeri T, Sugiyama M (2013) Dispersion relation for sound in rarefied polyatomic gases based on extended thermodynamics. Contin Mech Thermodyn 25:727–737Google Scholar
  8. 8.
    Taniguchi S, Arima T, Ruggeri T, Sugiyama M Thermodynamic theory of the shock wave structure in a rarefied polyatomic gas: beyond the Bethe-Teller theory. Phys Rev E 89:013025-1–013025-11Google Scholar
  9. 9.
    Taniguchi S, Arima T, Ruggeri T, Sugiyama M Effect of dynamic pressure on the shock wave structure in a rarefied polyatomic gas. Phys Fluids 26:016103-1–016103-15Google Scholar
  10. 10.
    Arima T, Taniguchi S, Ruggeri T, Sugiyama M (2012) Extended thermodynamics of real gases with dynamic pressure: an extension of Meixner’s theory. Phys Lett A 376:2799–2803CrossRefMathSciNetADSGoogle Scholar
  11. 11.
    Meixner J (1943) Absorption und dispersion des schalles in gasen mit chemisch reagierenden und anregbaren komponenten. I. Teil. Ann Physik 43:470–487CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    Meixner J (1952) Allgemeine theorie der schallabsorption in gasen und flussigkeiten unter berucksichtigung der transporterscheinungen. Acoustica 2:101–109MathSciNetGoogle Scholar
  13. 13.
    Arima T, Taniguchi S, Ruggeri T, Sugiyama M (2013) Monatomic rarefied gas as a singular limit of polyatomic gas in extended thermodynamics. Phys Lett A 377:2136–2140CrossRefMathSciNetADSGoogle Scholar
  14. 14.
    Boillat G, Ruggeri T (1997) Hyperbolic principal subsystems: entropy convexity and subcharacteristic conditions. Arch Rat Mech Anal 137:305–320CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Ikoma A, Arima T, Taniguchi S, Zhao N, Sugiyama M (2011) Fluctuating hydrodynamics for a rarefied gas based on extended thermodynamics. Phys Lett A 375:2601–2605CrossRefzbMATHADSGoogle Scholar
  16. 16.
    Arima T, Ikoma A, Taniguchi S, Sugiyama M, Zhao N (2012) Fluctuating hydrodynamics based on extended thermodynamics. Note Mat 32:227–236zbMATHMathSciNetGoogle Scholar
  17. 17.
    Lifshitz EM, Pitaevskii LP (1980) Statistical physics, 3rd edition Part 1. Pergamon Press, OxfordGoogle Scholar
  18. 18.
    Karniadakis G, Beskok A, Aluru N (2005) Microflows and nanoflows: fundamentals and simulation. Springer, New YorkGoogle Scholar
  19. 19.
    Kang W, Landman U (2007) Universality crossover of the pinch-off shape profiles of collapsing liquid nanobridges in vacuum and gaseous environments. Phys Rev Lett 98:064504-1–064504-4 CrossRefADSGoogle Scholar
  20. 20.
    Reimann P, Hänggi P (2002) Introduction to the physics of Brownian motors. Appl Phys A 75:169–178CrossRefADSGoogle Scholar
  21. 21.
    Oster G (2002) Brownian ratchets: Darwin’s motors. Nature (London) 417:25CrossRefADSGoogle Scholar
  22. 22.
    Münster A (1974) Statistical thermo-dynamics, vol. 2. Springer, BerlinGoogle Scholar
  23. 23.
    Barker JA, Henderson D (1976) What is “liquid"? Understanding the states of matter. Rev Mod Phys 48:587–671CrossRefMathSciNetADSGoogle Scholar
  24. 24.
    Hansen JP, McDonald JR (1986) Theory of simple liquids. Academic Press, LondonGoogle Scholar
  25. 25.
    Taniguchi S, Mentrelli A, Zhao N, Ruggeri T, Sugiyama M (2010) Shock-induced phase transition in systems of hard spheres with internal degrees of freedom. Phys Rev E 81:066307-1–066307-13 CrossRefADSGoogle Scholar
  26. 26.
    Carnahan NF, Starling KE (1969) Equation of state for nonattracting rigid spheres. J Chem Phys 51:635–636CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Takashi Arima
    • 1
  • Tommaso Ruggeri
    • 2
  • Masaru Sugiyama
    • 3
    Email author
  • Shigeru Taniguchi
    • 3
  1. 1.Center for Social Contribution and CollaborationNagoya Institute of TechnologyNagoyaJapan
  2. 2.Department of Mathematics & Research Center of Applied Mathematics (CIRAM)University of BolognaBolognaItaly
  3. 3.Graduate School of EngineeringNagoya Institute of TechnologyNagoyaJapan

Personalised recommendations