Advertisement

Meccanica

, Volume 49, Issue 11, pp 2699–2717 | Cite as

Modelling inheritance of plastic deformation during migration of phase boundaries using a phase field method

  • Kais Ammar
  • Benoît Appolaire
  • Samuel ForestEmail author
  • Maeva Cottura
  • Yann Le Bouar
  • Alphonse Finel
Multi-Scale and Multi-Physics Modelling for Complex Materials

Abstract

Recent advances in phase field modelling include the description of elastoviscoplastic material behaviour of the phases combined with diffusion and phase transformation. The corresponding models can be classified into two main groups of theories, referred to as interpolation and homogenisation models in the present work. It is shown that both approaches strongly differ concerning the question of inheritance of plastic deformation after the passing of a phase transformation front. Inheritance of plastic deformation is to be distinguished from the inheritance of the microstructure hardening and the corresponding dislocation structures. That is why the analysis is performed in the absence of hardening in the constitutive model. Finite element simulations of the growth of elastic misfitting precipitates embedded in a rate-independent elastoplastic matrix material reveal that the interpolation model allows for total inheritance of plastic deformation in contrast to the homogenisation model. The residual stress field and the growth kinetics are shown to be impacted by this essential property of the models. The results suggest that new models should be designed that allow for partial and controlled inheritance.

Keywords

Phase field Plasticity Homogenization Inheritance Finite element 

Notes

Acknowledgments

The authors acknowledge the financial support of the French Agence Nationale de la Recherche (ANR) under reference ANR-BLAN08-1-321567 (project Couphin).

References

  1. 1.
    Abrivard G, Busso E, Forest S, Appolaire B (2012) Phase field modelling of grain boundary motion driven by curvature and stored energy gradients. Part I: theory and numerical implementation. Philos Mag 92:3618–3642CrossRefADSGoogle Scholar
  2. 2.
    Abrivard G, Busso E, Forest S, Appolaire B (2012) Phase field modelling of grain boundary motion driven by curvature and stored energy gradients. Part II: application to recrystallisation. Philos Mag 92:3643–3664CrossRefADSGoogle Scholar
  3. 3.
    Ammar K, Appolaire B, Cailletaud G, Feyel F, Forest S (2009) Finite element formulation of a phase field model based on the concept of generalized stresses. Comput Mater Sci 45:800–805CrossRefGoogle Scholar
  4. 4.
    Ammar K, Appolaire B, Cailletaud G, Forest S (2009) Combining phase field approach and homogenization methods for modelling phase transformation in elastoplastic media. Eur J Comput Mech 18:485–523zbMATHGoogle Scholar
  5. 5.
    Ammar K, Appolaire B, Cailletaud G, Forest S (2011) Phase field modeling of elasto-plastic deformation induced by diffusion controlled growth of a misfitting spherical precipitate. Philos Mag Lett 91:164–172CrossRefADSGoogle Scholar
  6. 6.
    Anders D, Weinberg K (2011) Numerical simulation of diffusion induced phase separation and coarsening in binary alloys. Comput Mater Sci 50:1359–1364CrossRefGoogle Scholar
  7. 7.
    Barbe F, Quey R, Taleb L, Souza de Cursi E (2008) Numerical modelling of the plasticity induced during diffusive transformation. An ensemble averaging approach for the case of random arrays of nuclei. Eur J Mech A/Solids 27:1121–1139CrossRefzbMATHGoogle Scholar
  8. 8.
    Besson J, Cailletaud G, Chaboche JL, Forest S, Blétry M (2009) Non-linear mechanics of materials. Series: solid mechanics and its applications, vol 167. Springer, New York. ISBN: 978-90-481-3355-0Google Scholar
  9. 9.
    Bourne J, Atkinson C, Reed R (1994) Diffusion controlled growth in ternary systems. Metall Mater Trans A 25:2683–2694CrossRefGoogle Scholar
  10. 10.
    Cha PR, Kim J, Kim WT, Kim S (2009) Effect of transformation induced stress and plastic deformation on austenite/ferrite transition in low carbon steel. Plasticity 2009:376–378Google Scholar
  11. 11.
    Cottura M, Le Bouar Y, Finel A, Appolaire B, Ammar K, Forest S (2012) A phase field model incorporating strain gradient viscoplasticity: application to rafting in Ni-base superalloys. J Mech Phys Solids 60:1243–1256MathSciNetCrossRefADSGoogle Scholar
  12. 12.
    Durga A, Wollants P, Moelans N (2013) Evaluation of interfacial excess contributions in different phase-field models for elastically inhomogeneous systems. Model Simul Mater Sci Eng 21:055018CrossRefGoogle Scholar
  13. 13.
    Eiken J, Böttger B, Steinbach I (2006) Multiphase-field approach for multicomponent alloys with extrapolation scheme for numerical application. Phys Rev E 73:066122CrossRefADSGoogle Scholar
  14. 14.
    Forest S (2008) The micromorphic approach to plasticity and diffusion. In: Jeulin D, Forest S (eds) Continuum models and discrete systems 11. Proceedings of the international conference CMDS11, Les Presses de l’Ecole des Mines de Paris, Paris, pp 105–112Google Scholar
  15. 15.
    Forest S (2009) The micromorphic approach for gradient elasticity, viscoplasticity and damage. ASCE J Eng Mech 135:117–131CrossRefGoogle Scholar
  16. 16.
    Ganghoffer J, Denis S, Gautier E, Simon A, Simonsson K, Sjöström S (1991) Micromechanical simulation of a martensitic transformation by finite elements. J Phys IV (France) 1:C4-77-82Google Scholar
  17. 17.
    Gaubert A, Finel A, Le Bouar Y, Boussinot G (2008) Viscoplastic phase field modellling of rafting in Ni base superalloys. In: Continuum models and discrete systems CMDS11. Mines Paris Les Presses, Paris, pp 161–166.Google Scholar
  18. 18.
    Gaubert A, Le Bouar Y, Finel A (2010) Coupling phase field and viscoplasticity to study rafting in Ni-based superalloys. Philosophical Magazine 90:375–404CrossRefADSGoogle Scholar
  19. 19.
    Geslin P, Appolaire B, Finel A (2014) Investigation of coherency loss by prismatic punching with a nonlinear elastic model. Acta Mater 71:80–88CrossRefGoogle Scholar
  20. 20.
    Greenberg B, Volkov A, Kruglikov N (2001) Composite-like behavior of alloys ordered after severe cold deformation. Phys Metals Metallogr 92:167–178Google Scholar
  21. 21.
    Guo X, Shi S, Ma X (2005) Elastoplastic phase field model for microstructure evolution. Appl Phys Lett 87:221910-1-3ADSGoogle Scholar
  22. 22.
    Gurtin M (1996) Generalized Ginzburg−Landau and Cahn−Hilliard equations based on a microforce balance. Phys D 92:178–192MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Johnson WC, Alexander JID (1986) Interfacial conditions for thermomechanical equilibrium in two-phase crystals. J Appl Phys 9:2735–2746CrossRefADSGoogle Scholar
  24. 24.
    Khachaturyan A (1983) Theory of structural transformations in solids. Wiley, New YorkGoogle Scholar
  25. 25.
    Kim S, Kim W, Suzuki T (1998) Interfacial compositions of solid and liquid in a phase-field model with finite interface thickness for isothermal solidification in binary alloys. Phys Rev E 58(3):3316–3323CrossRefADSGoogle Scholar
  26. 26.
    Kim S, Kim W, Suzuki T (1999) Phase-field model for binary alloys. Phys Rev E 60(6):7186–7197CrossRefADSGoogle Scholar
  27. 27.
    Kouznetsova V, Geers M (2007) Modeling the interaction between plasticity and the austenite-martensite transformation. Int J Multiscale Comput Eng 5:129–140CrossRefGoogle Scholar
  28. 28.
    Kundin J, Raabe D, Emmerich H (2011) A phase-field model for incoherent martensitic transformations including plastic accommodation processes in the austenite. J Mech Phys Solids 59:2082–2102MathSciNetCrossRefzbMATHADSGoogle Scholar
  29. 29.
    Lemaitre J, Chaboche JL (1994) Mechanics of solid materials. University Press, Cambridge, UKGoogle Scholar
  30. 30.
    Louchet F, Hazotte A (1997) A model for low stress cross-diffusional creep and directional coarsening of superalloys. Scr Mater 37:589–597CrossRefGoogle Scholar
  31. 31.
    Nemat-Nasser S, Hori M (1999) Micromechanics: Overall properties of heterogeneous solids, 2nd edn. Elsevier Science Publishers, AmsterdamGoogle Scholar
  32. 32.
    Qu J, Cherkaoui M (2006) Fundamentals of micromechanics of solids. Wiley, HobokenCrossRefGoogle Scholar
  33. 33.
    Sanchez-Palencia E, Zaoui A (1987) Homogenization techniques for composite media. Lecture notes in physics vol, 272, Springer, BerlinGoogle Scholar
  34. 34.
    Spatschek R, Eidel B (2013) Driving forces for interface kinetics and phase field models. Int J Solids Struct 50:2424–2436CrossRefGoogle Scholar
  35. 35.
    Steinbach I (2009) Phase field models in materials science. Model Simul Mater Sci Eng 17:1–31MathSciNetCrossRefGoogle Scholar
  36. 36.
    Steinbach I, Apel M (2006) Multi phase field model for solid state transformation with elastic strain. Phys D 217:153–160CrossRefzbMATHGoogle Scholar
  37. 37.
    Steinbach I, Apel M (2007) The influence of lattice strain on pearlite formation in Fe-C. Acta Mater 55:4817–4822CrossRefGoogle Scholar
  38. 38.
    Steinbach I, Shchyglo O (2011) Phase-field modelling of microstructure evolution in solids: perspectives and challenges. Curr Opin Solid State Mater Sci 15:87–92CrossRefADSGoogle Scholar
  39. 39.
    Ubachs R, Schreurs P, Geers M (2004) A nonlocal diffuse interface model for microstructure evolution of tin-lead solder. J Mech Phys Solids 52:1763–1792CrossRefzbMATHADSGoogle Scholar
  40. 40.
    Ubachs R, Schreurs P, Geers M (2005) Phase field dependent viscoplastic behaviour of solder alloys. Int J Solids Struct 42:2533–2558CrossRefzbMATHGoogle Scholar
  41. 41.
    Wang Y, Chen LQ, Khachaturyan A (1993) Kinetics of strain-induced morphological transformation in cubic alloys with a miscibility gap. Acta Metallurgica et Materialia 41:279–296CrossRefGoogle Scholar
  42. 42.
    Wang Y, Khachaturyan A (1995) Shape instability during precipitate growth in coherent solids. Acta Metall Mater 43(5):1837–1857CrossRefADSGoogle Scholar
  43. 43.
    Weinberg K, Böhme T, Müller W (2009) Kirkendall voids in the intermetallic layers of solder joints in MEMS. Comput Mater Sci 45:827–831CrossRefGoogle Scholar
  44. 44.
    Z-set package: Non-linear material & structure analysis suite. www.zset-software.com. (2013)
  45. 45.
    Zaoui A (2002) Continuum micromechanics: survey. ASCE J Eng Mech 128:808–816CrossRefGoogle Scholar
  46. 46.
    Zhou N, Shen C, Mills M, Wang Y (2008) Contributions from elastic inhomogeneity and from plasticity to γ′ rafting in single-crystal Ni-Al. Acta Mater 56:6156–6173CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Kais Ammar
    • 1
  • Benoît Appolaire
    • 2
  • Samuel Forest
    • 1
    Email author
  • Maeva Cottura
    • 2
  • Yann Le Bouar
    • 2
  • Alphonse Finel
    • 2
  1. 1.Mines ParisTech, Centre des Matériaux / CNRS UMR 7633Evry CedexFrance
  2. 2.Laboratoire d’Etude des Microstructures, CNRS/ONERA, UMR 104Châtillon CedexFrance

Personalised recommendations