Advertisement

Meccanica

, Volume 48, Issue 8, pp 1875–1882 | Cite as

Experimental analysis and modeling of self-standing curved crystals for focusing of X-rays

  • Riccardo Camattari
  • Vincenzo GuidiEmail author
  • Luca Lanzoni
  • Ilaria Neri
MICRO- OR NANO-MECHANICS

Abstract

Novel applications can be attained through the usage of bent crystals as optical components for the challenge of focusing hard X and γ rays by Bragg diffraction. Nuclear astrophysics, nuclear medicine and homeland security would highly benefit from such optics, because they all share the same need for efficient X- and γ-ray focusing systems. With this aim, self-standing bent silicon crystals have been reproducibly attained thanks to the method of surface grooving. An extensive study has been worked out to understand the process of substrate deformation. By adjusting experimental parameters, very good control of the curvature is afforded. Process of deformation has been modeled in terms of irreversible compression occurring in the material close to the grooves. The underlying silicon was treated as an anisotropic medium elastically reacting to the state of stress provided by the grooves. Comparison between experimental results and theoretical expectations was satisfactorily achieved.

Keywords

Crystal bending Surface grooving Mechanical anisotropy Optical interferometry X-ray diffractometry 

Notes

Acknowledgements

We acknowledge partial financial support by the Italian Space Agency (ASI) under LAUE project. We also acknowledge Professor Carmela Vaccaro (Earth Sciences Department of Ferrara) and Dr. Chiara Soffritti (Engineering Department of Ferrara) for helpful discussion and technical support.

References

  1. 1.
    Scandale W, Carnera A, Della Mea G, De Salvador D, Milan R, Vomiero A, Baricordi S, Dalpiaz P, Fiorini M, Guidi V, Martinelli G, Mazzolari A, Milan E, Ambrosi G, Azzarello P, Battiston R, Bertucci B, Burger WJ, Ionica M, Zuccon P, Cavoto G, Santacesaria R, Valente P, Vallazza E, Afonin AG, Baranov VT, Chesnokov YA, Kotov VI, Maisheev VA, Yazynin IA, Afanasiev SV, Kovalenko AD, Taratin AM, Denisov AS, Gavrikov YA, Ivanov YM, Ivochkin VG, Kosyanenko SV, Petrunin AA, Skorobogatov VV, Suvorov VM, Bolognini D, Foggetta L, Hasan S, Prest M (2008) Phys Rev (ST Accel Beams) 11:063501 ADSCrossRefGoogle Scholar
  2. 2.
    Scandale W, Still DA, Carnera A, Della Mea G, De Salvador D, Milan R, Vomiero A, Baricordi S, Dalpiaz P, Fiorini M, Guidi V, Martinelli G, Mazzolari A, Milan E, Ambrosi G, Azzarello P, Battiston R, Bertucci B, Burger WJ, Ionica M, Zuccon P, Cavoto G, Santacesaria R, Valente P, Vallazza E, Afonin AG, Baranov VT, Chesnokov YA, Kotov VI, Maisheev VA, Yaznin IA, Afanasiev SV, Kovalenko AD, Taratin AM, Denisov AS, Gavrikov YA, Ivanov YM, Ivochkin VG, Kosyanenko SV, Petrunin AA, Skorobogatov VV, Suvorov VM, Bolognini D, Foggetta L, Hasan S, Prest M (2007) Phys Rev Lett 98:154801 ADSCrossRefGoogle Scholar
  3. 3.
    Bellucci S, Bini S, Biryukov VM, Chesnokov YA, Dadagov S, Giannini G, Guidi V, Ivanov YM, Kotov VI, Maisheev VA, Malag C, Martinelli G, Petrunin AA, Skorobogatov VV, Stefancich M, Vincenzi D (2003) Phys Rev Lett 90:034801 ADSCrossRefGoogle Scholar
  4. 4.
    Pisa A, Frontera F, Loffredo G, Pellicciotta D, Auricchio N (2005) Exp Astron 20:219 ADSCrossRefGoogle Scholar
  5. 5.
    Lund N (1992) Exp Astron 2:259 MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Roa D, Smither R, Zhang X, Nie K, Shieh Y, Ramsinghani N, Milne N, Kuo J, Redpath J, Al-Ghazi M, Caligiuri P (2005) Exp Astron 20:229 ADSCrossRefGoogle Scholar
  7. 7.
    Natalucci L, Ubertini P, Bazzano A, Caroli E, Federici M, Quadrini E, Vittori R (2009) Wirel Pers Commun 51:725. doi: 10.1007/s11277-009-9769-1 CrossRefGoogle Scholar
  8. 8.
    Barrière N, Guidi V, Bellucci V, Camattari R, Buslaps T, Rousselle J, Roudil G, Arnaud FX, Bastie P, Natalucci L (2010) J Appl Crystallogr 43:1519 CrossRefGoogle Scholar
  9. 9.
    Bellucci V, Camattari R, Guidi V, Neri I, Barrière N (2011) Exp Astron 31:45. doi: 10.1007/s10686-011-9226-5 ADSCrossRefGoogle Scholar
  10. 10.
    Guidi V, Bellucci V, Camattari R, Neri I (2011) J Appl Crystallogr 44:1255 CrossRefGoogle Scholar
  11. 11.
    Guidi V, Bellucci V, Camattari R, Neri I (2013) Nucl Instrum Methods B (in press). doi: 10.1016/j.nimb.2013.01.070 Google Scholar
  12. 12.
    Smither RK, Saleem KA, Roa DE, Beno MA, Ballmoos PV, Skinner GK (2005) Exp Astron 20:201 ADSCrossRefGoogle Scholar
  13. 13.
    Authier A (2001) Dynamical theory of X-ray diffraction. Oxford University Press, London Google Scholar
  14. 14.
    Gogotsi Y, Baek C, Kirscht F (1999) Semicond Sci Technol 14:936. doi: 10.1088/0268-1242/14/10/310 ADSCrossRefGoogle Scholar
  15. 15.
    Bellucci V, Camattari R, Guidi V, Mazzolari A (2011) Thin Solid Films 520:1069 ADSCrossRefGoogle Scholar
  16. 16.
    Erdem Alaca B, Saif M, Sehitoglu H (2002) Acta Mater 50(5):1197. doi: 10.1016/S1359-6454(01)00421-9 CrossRefGoogle Scholar
  17. 17.
    Stoney GG (1909) Proc R Soc A 82:172. doi: 10.1098/rspa.1909.0021 ADSCrossRefGoogle Scholar
  18. 18.
    Guidi V, Lanzoni L, Mazzolari A (2011) Thin Solid Films 520:1074 ADSCrossRefGoogle Scholar
  19. 19.
    Lekhnitskii S, Tsai S, Cheron T (1956) Anisotropic plates. Gordon & Breach, New York Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Riccardo Camattari
    • 1
    • 2
  • Vincenzo Guidi
    • 1
    • 2
    Email author
  • Luca Lanzoni
    • 3
  • Ilaria Neri
    • 1
    • 2
  1. 1.Department of PhysicsUniversity of FerraraFerraraItaly
  2. 2.CNR—IDASC SENSOR Lab.FerraraItaly
  3. 3.Department of EngineeringUniversity of San MarinoSan MarinoRepublic of San Marino

Personalised recommendations