, Volume 48, Issue 7, pp 1643–1659 | Cite as

A complementarity-based rolling friction model for rigid contacts

  • Alessandro TasoraEmail author
  • Mihai Anitescu


In this work (also, preprint ANL/MCS-P3020-0812, Argonne National Laboratory) we introduce a complementarity-based rolling friction model to characterize dissipative phenomena at the interface between moving parts. Since the formulation is based on differential inclusions, the model fits well in the context of nonsmooth dynamics, and it does not require short integration timesteps. The method encompasses a rolling resistance limit for static cases, similar to what happens for sliding friction; this is a simple yet efficient approach to problems involving transitions from rolling to resting, and vice-versa. We propose a convex relaxation of the formulation in order to achieve algorithmic robustness and stability; moreover, we show the side effects of the convexification. A natural application of the model is the dynamics of granular materials, because of the high computational efficiency and the need for only a small set of parameters. In particular, when used as a micromechanical model for rolling resistance between granular particles, the model can provide an alternative way to capture the effect of irregular shapes. Other applications can be related to real-time simulations of rolling parts in bearing and guideways, as shown in examples.


Variational inequalities Contacts Rolling friction Multibody Complementarity 



A. Tasora thanks Ferrari Automotive and TP Engineering for financial support. Mihai Anitescu was supported by the U.S. Department of Energy, under Contract No. DE-AC02-06CH11357.


  1. 1.
    Anitescu M, Hart GD (2004) A fixed-point iteration approach for multibody dynamics with contact and friction. Math Program, Ser B 101(1):3–32 (ANL/MCS P985-0802) MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Anitescu M, Tasora A (2010) An iterative approach for cone complementarity problems for nonsmooth dynamics. Comput Optim Appl 47(2):207–235 MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Anitescu M, Potra FA, Stewart D (1999) Time-stepping for three-dimensional rigid-body dynamics. Comput Methods Appl Mech Eng 177:183–197 MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    Arora S, Barak B (2009) Computational complexity: a modern approach. Cambridge University Press, Cambridge CrossRefGoogle Scholar
  5. 5.
    Bardet J (1994) Observations on the effects of particle rotations on the failure of idealized granular materials. Mech Mater 18(2):159–182. Special Issue on Microstructure and Strain Localization in Geomaterials CrossRefGoogle Scholar
  6. 6.
    Calvetti F, Nova R (2004) Micromechanical approach to slope stability analysis. Degradations and instabilities in geomaterials. Springer, Berlin Google Scholar
  7. 7.
    Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65 CrossRefGoogle Scholar
  8. 8.
    de Coulomb CA (1821) Théorie des machines simples en ayant égard au frottement de leurs parties et à la roideur des cordages. Bachelier, Paris Google Scholar
  9. 9.
    Estrada N, Azema É, Radjaï F, Taboada A (2011) Identification of rolling resistance as a shape parameter in sheared granular media. 1. Phys Rev E, Stat Nonlinear Soft Matter Phys 84(1):011306 ADSCrossRefGoogle Scholar
  10. 10.
    Facchinei F, Pang J (2003) Finite-dimensional variational inequalities and complementarity problems, vol 1. Springer, Berlin Google Scholar
  11. 11.
    Flores P, Leine R, Glocker C (2012) Application of the nonsmooth dynamics approach to model and analysis of the contact-impact events in cam-follower systems. Nonlinear Dyn 69:2117–2133. doi: 10.1007/s11071-012-0413-3 MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hairer E, Nørsett SP, Wanner G (2010) Solving ordinary differential equations. Springer, Berlin Google Scholar
  13. 13.
    Haug EJ (1989) Computer-aided kinematics and dynamics of mechanical systems. Prentice-Hall, Englewood Cliffs Google Scholar
  14. 14.
    Iwashita K, Oda M (1998) Rolling resistance at contacts in simulation of shear band development by DEM. J Eng Mech 124(3):285–292 CrossRefGoogle Scholar
  15. 15.
    Jiang M, Yu H-S, Harris D (2005) A novel discrete model for granular material incorporating rolling resistance. Comput Geotech 32(5):340–357 CrossRefGoogle Scholar
  16. 16.
    Jourdan F, Alart P, Jean M (1998) A Gauss Seidel like algorithm to solve frictional contract problems. Comput Methods Appl Mech Eng 155:31–47 MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. 17.
    Ketterhagen WR, am Ende MT, Hancock BC (2009) Process modeling in the pharmaceutical industry using the discrete element method. J Pharm Sci 2(98):442–470 CrossRefGoogle Scholar
  18. 18.
    Kinderleher D, Stampacchia G (1980) An introduction to variational inequalities and their application. Academic Press, New York Google Scholar
  19. 19.
    Kruggel-Emden H, Rickelt S, Wirtz S, Scherer V (2008) A study on the validity of the multi-sphere discrete element method. Powder Technol 188(2):153–165 CrossRefGoogle Scholar
  20. 20.
    Leine RI, Glocker C (2003) A set-valued force law for spatial Coulomb-Contensou friction. Eur J Mech A, Solids 22(2):193–216 MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Negrut D, Tasora A, Mazhar H, Heyn T, Hahn P (2012) Leveraging parallel computing in multibody dynamics. Multibody Syst Dyn 27:95–117. doi: 10.1007/s11044-011-9262-y zbMATHCrossRefGoogle Scholar
  22. 22.
    Nocedal J, Wright SJ (1999) Numerical optimization, vol. 39. Springer, Berlin CrossRefGoogle Scholar
  23. 23.
    Oda M, Konishi J, Nemat-Nasser S (1982) Experimental micromechanical evaluation of strength of granular materials: effects of particle rolling. Mech Mater 1(4):269–283 CrossRefGoogle Scholar
  24. 24.
    Pacejka HB (2005) Tire and vehicle dynamics, 2nd edn. SAE International, Warrendale Google Scholar
  25. 25.
    Pfeiffer F, Glocker C (1996) Multibody dynamics with unilateral contacts. Wiley, New York zbMATHCrossRefGoogle Scholar
  26. 26.
    Rankine WJM (1868) Manual of applied mechanics. Charless Griffin, London Google Scholar
  27. 27.
    Shabana AA (2005) Dynamics of multibody systems, 3rd edn. Cambridge University Press, Cambridge zbMATHCrossRefGoogle Scholar
  28. 28.
    Stewart D, Pang J-S (2008) Differential variational inequalities. Math Program 113(2):345–424 MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Stewart DE (2001) Reformulations of measure differential inclusions and their closed graph property. J Differ Equ 175:108–129 zbMATHCrossRefGoogle Scholar
  30. 30.
    Stewart DE, Trinkle JC (1996) An implicit time-stepping scheme for rigid-body dynamics with inelastic collisions and Coulomb friction. Int J Numer Methods Eng 39:2673–2691 MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Studer C, Glocker C (2007) Solving normal cone inclusion problems in contact mechanics by iterative methods. J Syst Des Dyn 1(3):458–467 Google Scholar
  32. 32.
    Tasora A, Anitescu M (2010) A convex complementarity approach for simulating large granular flows. J Comput Nonlinear Dyn 5(3):1–10 CrossRefGoogle Scholar
  33. 33.
    Tasora A, Anitescu M (2011) A matrix-free cone complementarity approach for solving large-scale, nonsmooth, rigid body dynamics. Comput Methods Appl Mech Eng 200(5–8):439–453 MathSciNetADSzbMATHCrossRefGoogle Scholar
  34. 34.
    Tasora A, Negrut D, Anitescu M (2008) Large-scale parallel multi-body dynamics with frictional contact on the graphical processing unit. J Multi-Body Dyn 222(4):315–326 Google Scholar
  35. 35.
    Terzaghi K, Peck RB, Mesri G (1996) Soil mechanics in engineering practice. Wiley-Interscience, New York Google Scholar
  36. 36.
    Tordesillas A, Walsh D (2002) Incorporating rolling resistance and contact anisotropy in micromechanical models of granular media. Powder Technol 124(1–2):106–111 CrossRefGoogle Scholar
  37. 37.
    Weisbach JL (1870) A manual of the mechanics of engineering and of the construction of machines, vol 3. Van Nostrand, New York Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria IndustrialeUniversità degli Studi di ParmaParmaItaly
  2. 2.Mathematics and Computer Science DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations