, Volume 48, Issue 5, pp 1177–1190 | Cite as

Types of self-motions of planar Stewart Gough platforms



We show that the self-motions of general planar Stewart Gough platforms can be characterized in the complex extension of the Euclidean 3-space by the movement of three platform points in planes orthogonal to the planar base (3-point Darboux motion) and a simultaneous sliding of three planes orthogonal to the planar platform through points of the base (3-plane Mannheim motion). Based on this consideration, we prove that all one-parametric self-motions of a general planar Stewart Gough platform can be classified into two types (type I DM and type II DM, where DM abbreviates Darboux Mannheim). We also succeed in presenting a set of 24 equations yielding a type II DM self-motion that can be computed explicitly and that is of great simplicity seen in the context of self-motions. These 24 conditions are the key for the complete classification of general planar Stewart Gough platforms with type II DM self-motions, which is an important step in solving the famous Borel Bricard problem.


Self-motion Stewart Gough platform Borel Bricard problem Darboux motion Mannheim motion 



This research is supported by Grant No. I 408-N13 of the Austrian Science Fund FWF within the project “Flexible polyhedra and frameworks in different spaces”, an international cooperation between FWF and RFBR, the Russian Foundation for Basic Research.

Moreover, the author would like to thank the reviewers for their useful comments and suggestions which have helped to improve the quality of the paper.


  1. 1.
    Merlet J-P (1992) Singular configurations of parallel manipulators and Grassmann geometry. Int J Robot Res 8(5):45–56 CrossRefGoogle Scholar
  2. 2.
    Borel E (1908) Mémoire sur les déplacements à trajectoires sphériques. Mémoire présenteés par divers savants à l’Académie des Sciences de l’Institut National de France 33(1):1–128 Google Scholar
  3. 3.
    Bricard R (1906) Mémoire sur les déplacements à trajectoires sphériques. J École Polyt (2) 11:1–96 Google Scholar
  4. 4.
    Husty M (2000) E. Borel’s and R. Bricard’s papers on displacements with spherical paths and their relevance to self-motions of parallel manipulators. In: Ceccarelli M (ed) International symposium on history of machines and mechanisms. Kluwer, Dordrecht, pp 163–172. Google Scholar
  5. 5.
    Vogler H (2008) Bemerkungen zu einem Satz von W. Blaschke und zur Methode von Borel-Bricard. Grazer Math Ber 352:1–16 MathSciNetMATHGoogle Scholar
  6. 6.
    Karger A (2010) Parallel manipulators and Borel-Bricard’s problem. Comput Aided Geom Des 27(8):669–680 MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Nawratil G (2012) Review and recent results on Stewart Gough platforms with self-motions. Appl Mech Mater 162:151–160 CrossRefGoogle Scholar
  8. 8.
    Ma O, Angeles J (1992) Architecture singularities of parallel manipulators. Int J Robot Autom 7(1):23–29 Google Scholar
  9. 9.
    Karger A (2003) Architecture singular planar parallel manipulators. Mech Mach Theory 38(11):1149–1164 MATHCrossRefGoogle Scholar
  10. 10.
    Nawratil G (2008) On the degenerated cases of architecturally singular planar parallel manipulators. J Geom Graph 12(2):141–149 MathSciNetMATHGoogle Scholar
  11. 11.
    Röschel O, Mick S (1998) Characterisation of architecturally shaky platforms. In: Lenarcic J, Husty ML (eds) Advances in robot kinematics: analysis and control. Kluwer, Dordrecht, pp 465–474 CrossRefGoogle Scholar
  12. 12.
    Wohlhart K (2010) From higher degrees of shakiness to mobility. Mech Mach Theory 45(3):467–476 MATHCrossRefGoogle Scholar
  13. 13.
    Karger A (2008) Architecturally singular non-planar parallel manipulators. Mech Mach Theory 43(3):335–346 MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Nawratil G (2009) A new approach to the classification of architecturally singular parallel manipulators. In: Kecskemethy A, Müller A (eds) Computational kinematics. Springer, Berlin, pp 349–358 CrossRefGoogle Scholar
  15. 15.
    Karger A (2008) New self-motions of parallel manipulators. In: Lenarcic J, Wenger P (eds) Advances in robot kinematics: analysis and design. Springer, Berlin, pp 275–282 CrossRefGoogle Scholar
  16. 16.
    Karger A (2008) Self-motions of Stewart-Gough platforms. Comput Aided Geom Des 25(9):775–783 MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Karger A, Husty M (1998) Classification of all self-motions of the original Stewart-Gough platform. Comput Aided Des 30(3):205–215 MATHCrossRefGoogle Scholar
  18. 18.
    Kœnigs G (1897) Leçons de cinématique. Librairie Scientifique. Hermann, Paris MATHGoogle Scholar
  19. 19.
    Bottema O, Roth B (1990) Theoretical kinematics. Dover, New York MATHGoogle Scholar
  20. 20.
    Husty M, Mielczarek S, Hiller M (2002) A redundant spatial Stewart-Gough platform with a maximal forward kinematics solution set. In: Lenarcic J, Thomas F (eds) Advances in robot kinematics: theory and applications. Springer, Berlin, pp 147–154 Google Scholar
  21. 21.
    Mielczarek S, Husty ML, Hiller M (2002) Designing a redundant Stewart-Gough platform with a maximal forward kinematics solution set. In: Proceedings of the international symposium of multibody simulation and mechatronics, Mexico City, Mexico Google Scholar
  22. 22.
    Borras J, Thomas F, Torras C (2010) Singularity-invariant leg rearrangements in doubly-planar Stewart-Gough platforms. In: Proceedings of robotics science and systems, Zaragoza, Spain Google Scholar
  23. 23.
    Karger A (1998) Architecture singular parallel manipulators. In: Lenarcic J, Husty ML (eds) Advances in robot kinematics: analysis and control. Kluwer, Dordrecht, pp 445–454 CrossRefGoogle Scholar
  24. 24.
    Husty ML (1996) An algorithm for solving the direct kinematics of general Stewart-Gough platforms. Mech Mach Theory 31(4):365–380 CrossRefGoogle Scholar
  25. 25.
    Nawratil G (2004) Zur Geometrie von Stewart Gough Plattformen. Master thesis, TU Vienna Google Scholar
  26. 26.
    Nawratil G (2011) Basic result on type II DM self-motions of planar Stewart Gough platforms. In: Lovasz ECh, Corves B (eds) Mechanisms, transmissions and application. Springer, Berlin, pp 235–244 Google Scholar
  27. 27.
    Nawratil G (2011) Necessary conditions for type II DM self-motions of planar Stewart Gough platforms, Technical report no 219. Geometry preprint series. TU Vienna Google Scholar
  28. 28.
    Nawratil G (2011) Planar Stewart Gough platforms with a type II DM self-motion. J Geom 102(1):149–169 MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Selig JM, Husty M (2011) Half-turns and line symmetric motions. Mech Mach Theory 46(2):156–167 MATHCrossRefGoogle Scholar
  30. 30.
    Krames J (1937) Zur Bricardschen Bewegung, deren sämtliche Bahnkurven auf Kugeln liegen (Über symmetrische Schrotungen II). Mh Math Phys 45:407–417 MathSciNetCrossRefGoogle Scholar
  31. 31.
    Bricard R (1897) Mémoire sur la théorie de l’octaèdre articulé. J Math Pures Appl 3:113–148 Google Scholar
  32. 32.
    Blaschke W (1920) Wackelige Achtflache. Math Z 6:85–93 MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Institute of Discrete Mathematics and GeometryVienna University of TechnologyViennaAustria

Personalised recommendations