, Volume 48, Issue 5, pp 1117–1126 | Cite as

Collision, damage, smooth evolution of an articulation. The “tennis elbow”



We present a simple example of phenomenon where collision and damage take place together. We consider an arm with its forearm connected by the elbow: a plane system made of two rods, one of which is clamped and the other is hinged at its extremum and free to rotate about it. The rotation angle ϑ of the forearm is constrained to be neither larger than π nor lower than 0. The rods are connected through a hair spring, which represents the elbow articulation and whose damage is accounted for. The damage may be related to the tennis elbow pathology. We also take into account the discontinuity of the angular velocity of the forearm, due to collisions when ϑ=0 or ϑ=π, and provide some numerical results.


Collision Damage Predictive theory Tennis elbow Non smooth mechanics 


Presentiamo un semplice esempio di fenomeno in cui intervengono insieme sia urto che danno. Consideriamo un braccio con il suo avambraccio connesso mediante il gomito: un sistema piano composto di due aste, la prima bloccata, la seconda incernierata alla prima in un suo estremo e libera di ruotare attorno ad esso. L’angolo di rotazione ϑ dell’avambraccio è vincolato ad essere compreso tra 0 e π. Le aste sono connesse tramite una molla rotazionale, che rappresenta l’articolazione del gomito e di cui si tiene conto del danno. Il danno può essere legato alla patologia del “gomito del tennista”. Teniamo conto anche della discontinuità della velocità angolare dell’avambraccio, dovuta agli urti quando ϑ=0 o ϑ=π, e forniamo alcuni risultati numerici.


  1. 1.
    Lemay MA, Crago P (1996) A dynamic model for simulating movements of the elbow, forearm, and wrist. J Biomech 29(10):1319–1330 CrossRefGoogle Scholar
  2. 2.
    Riek S, Chapman AE, Milner T (1999) A simulation of muscle force and internal kinematics of extensor carpi radialis brevis during backhand tennis stroke: implications for injury. Clin Biomech 14:477–483 CrossRefGoogle Scholar
  3. 3.
    van Zuylen EJ, van Velzen A, Denier van der Gon JJ (1988) A biomechanical model for flexion torques of human arm muscles as a function of elbow angle. J Biomech 21(3):183–190 CrossRefGoogle Scholar
  4. 4.
    Frémond M, Nedjar B (1996) Damage, gradient of damage and principle of virtual power. Int J Solids Struct 33(8):1083–1103 MATHCrossRefGoogle Scholar
  5. 5.
    Pede N, Podio-Guidugli P, Tomassetti G (2006) Balancing the force that drives the peeling of an adhesive tape. Il Nuovo Cimento 121B(5):531–543 ADSGoogle Scholar
  6. 6.
    Frémond M (2002) Non-smooth thermomechanics. Springer, Berlin MATHCrossRefGoogle Scholar
  7. 7.
    Moreau JJ (2003) Fonctionnelles convexes. Dipartimento di Ingegneria Civile, Università Tor Vergata, Rome. ISBN 978-88-6296-001-4 Google Scholar
  8. 8.
    Moreau JJ (1966) Séminaire sur les équations aux dérivées partielles. Collège de France, Paris Google Scholar
  9. 9.
    Ekeland I, Temam R (1974) Analyse convexe et problèmes variationnels. Dunod-Gauthier-Villars, Paris MATHGoogle Scholar
  10. 10.
    Frémond M (2007) Collisions. Dipartimento di Ingegneria Civile dell’Università di Roma Tor Vergata, Rome. ISBN 978-88-6296-000-7 Google Scholar
  11. 11.
    Jean M (2010) Numerical simulation of granular materials (Chap. 4). In: Cambou B, Jean M, Radjaï F (eds) Micromechanics of granular materials. Wiley, New York. doi: 10.1002/9780470611616.ch4 Google Scholar
  12. 12.
    Cholet C (1998) Chocs de solides rigides. PhD thesis, Université Pierre et Marie Curie, Paris Google Scholar
  13. 13.
    Cholet C (1999) Collision d’un point et d’un plan. C R Acad Sci, Sér I 328:445–458. doi: 10.1016/S0764-4442(99)80189-X MathSciNetADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Facoltà di IngegneriaUniversità degli Studi di Roma Tor VergataRomeItaly
  2. 2.Dipartimento di Ingegneria Civile, Facoltà di IngegneriaUniversità degli Studi di Roma Tor VergataRomeItaly

Personalised recommendations