Meccanica

, Volume 48, Issue 5, pp 1081–1091 | Cite as

Development, modeling and deflection analysis of hybrid micro actuator with integrated thermal and piezoelectric actuation

  • Hasan Pourrostami
  • Hassan Zohoor
  • Mohamad H. Kargarnovin
Article

Abstract

Micro actuators are irreplaceable part of motion control in minimized systems.

The current study presents an analytical model for a new Hybrid Thermo Piezoelectric micro actuator based on the combination of piezoelectric and thermal actuation mechanisms. The micro actuator structure is a double PZT cantilever beam consisting of two arms with different lengths. The presented micro actuator uses the structure of electrothermal micro actuator in which polysilicon material is replaced by PZT. Also the voltage and poling directions are considered in the lengthwise of PZT beams. As a result, the piezoelectric actuation mechanism is based on d 33 strain coefficient.

The tip deflection of micro actuator is obtained using Timoshenko beam theory. Analytical results are compared with FEM results along with other reported results in the literature. The effects of geometrical parameters and PZT material constants on actuator tip deflection are studied to provide an efficient optimization of HTP micro actuator.

Keywords

Hybrid Micro actuator Thermo piezoelectric Deflection Timoshenko beam theory 

References

  1. 1.
    Boukallel M, Girot M, Regnier SR (2009) Characterization of cellular mechanical behavior at the microscale level by a hybrid force sensing device. J Mech Behav Biomed Mater 2:297–304 CrossRefGoogle Scholar
  2. 2.
    Lin W, Chen WJ (2008) Fiber assembly of MEMS optical switches with U-groove channels. IEEE Trans Autom Sci Eng 5(2):207–215 CrossRefGoogle Scholar
  3. 3.
    Clévy C, Hubert A, Chaillet N (2008) Flexible micro-assembly system equipped with an automated tool changer. J Micro-Nano Mechatronics 4(1):59–72 CrossRefGoogle Scholar
  4. 4.
    Nguyen NT, Ho S (2004) A polymeric microgripper with integrated thermal actuators. J Micromech Microeng 14:969–974 CrossRefGoogle Scholar
  5. 5.
    Zheng L, Lu M (2007) A large-displacement CMOS micromachined thermal actuator with comb electrodes for capacitive sensing. Sens Actuators A, Phys 136(2):697–703 MathSciNetCrossRefGoogle Scholar
  6. 6.
    De Cicco G, Morten B (2009) Thick-film piezoelectric actuators for micro positioning. J Intell Mater Syst Struct 20:1689–1697 CrossRefGoogle Scholar
  7. 7.
    Cabal A, Ross D, Lebens J, Trauernicht D (2005) Thermal actuator with optimized heater for liquid drop ejectors. Sens Actuators A, Phys 123–124:531–539 CrossRefGoogle Scholar
  8. 8.
    Roberts DC, Li H (2003) A piezoelectric microvalve for compact high frequency high-differential pressure hydraulic micropumping systems. J Microelectromech Syst 12:81–92 CrossRefGoogle Scholar
  9. 9.
    Li LX, Shen YP (2001) The optimal design of piezoelectric actuators for acoustic control. Smart Mater Struct 10:421–426 ADSCrossRefGoogle Scholar
  10. 10.
    Ha S, Kim Y (2002) Analysis of a piezoelectric multi-morph in extensional and flexural motions. J Sound Vib 253(5):1001–1014 ADSCrossRefGoogle Scholar
  11. 11.
    Alwan A, Aluru N (2009) Analysis of hybrid electrothermomechanical microactuators with integrated electrothermal and electrostatic actuation. J Microelectromech Syst 18:1126–1136 CrossRefGoogle Scholar
  12. 12.
    Rakotondrabe M, Ivan I (2010) Development and dynamic modeling of a new hybrid thermopiezoelectric microactuator. IEEE Trans Robot 26:1077–1085 CrossRefGoogle Scholar
  13. 13.
    Huang QA, Lee NKS (1999) Analytical modeling and optimization for a laterally driven polysilicon thermal actuator. Microsyst Technol 5(3):133–137 CrossRefGoogle Scholar
  14. 14.
    Lee CC, Hsu W (2003) Optimization of an electro-thermally and laterally driven microactuator. Microsyst Technol 9:331–334 CrossRefGoogle Scholar
  15. 15.
    Yang (2006) The mechanics of piezoelectric structures. World Scientific, Singapore CrossRefGoogle Scholar
  16. 16.
    Wang CM, Reddy JN, Lee KH (2000) Shear deformable beams and plates: relationship with classical solution, 1st edn. Elsevier, Amsterdam Google Scholar
  17. 17.
    Aldraihem OJ, Khdeir AA (2000) Smart beams with extension and thickness-shear piezoelectric actuators. Smart Mater Struct 9:1–9 ADSCrossRefGoogle Scholar
  18. 18.
    Kargarnovin MH, Najafizadeh MM, Viliani NS (2007) Vibration control of a functionally graded Material plate patched with piezoelectric actuators and sensors under a constant electric charge. Smart Mater Struct 16:1252–1259 ADSCrossRefGoogle Scholar
  19. 19.
    Hooker MW (1998) Properties of PZT-Based piezoelectric ceramics between −150 and 250 °C. Lockheed Martin Engineering & Science, Hampton Google Scholar
  20. 20.
    Sabat G et al. (2007) Temperature dependence of the complete material coefficients matrix of soft and hard doped piezoelectric lead zirconate titanate ceramics. J Appl Phys 101:064111 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Hasan Pourrostami
    • 1
  • Hassan Zohoor
    • 2
  • Mohamad H. Kargarnovin
    • 3
  1. 1.Department of Mechanical Engineering and Aerospace, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Center of Excellence in Design, Robotics, and AutomationSharif University of TechnologyTehranIran
  3. 3.School of Mechanical EngineeringSharif University of TechnologyTehranIran

Personalised recommendations