, Volume 47, Issue 3, pp 789–794 | Cite as

The Korn-type inequality in a Cosserat model for thin thermoelastic porous rods

  • Mircea BîrsanEmail author
  • Holm Altenbach
Brief Notes and Discussions


Korn-type inequality Directed curves Elastic rods Existence of solution Porous media 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fichera G (1972) Existence theorems in elasticity. In: Flügge S (ed) Handbuch der Physik, vol VI a/2. Springer, Berlin, pp 347–389 Google Scholar
  2. 2.
    Ciarlet PG (1988) Mathematical elasticity, vol I: Three-dimensional elasticity. North-Holland, Amsterdam Google Scholar
  3. 3.
    Ciarlet PG (2005) An introduction to differential geometry with applications to elasticity. Springer, Dordrecht zbMATHGoogle Scholar
  4. 4.
    Bîrsan M (2008) Inequalities of Korn’s type and existence results in the theory of Cosserat elastic shells. J Elast 90:227–239 CrossRefzbMATHGoogle Scholar
  5. 5.
    Trabucho L, Viaño JM (1996) Mathematical modelling of rods. In: Ciarlet PG, Lions JL (eds) Handbook of numerical analysis, vol 4. North-Holland, Amsterdam, pp 487–974 Google Scholar
  6. 6.
    Panasenko G (2005) Multi-scale modelling for structures and composites. Springer, Dordrecht Google Scholar
  7. 7.
    Tiba D, Vodak R (2005) A general asymptotic model for Lipschitzian curved rods. Adv Math Sci Appl 15:137–198 zbMATHMathSciNetGoogle Scholar
  8. 8.
    Ke L-L, Yang J, Kitipornchai S (2010) An analytical study on the nonlinear vibration of functionally graded beams. Meccanica 45:743–752 CrossRefMathSciNetGoogle Scholar
  9. 9.
    Bîrsan M, Altenbach H (2011) On the theory of porous elastic rods. Int J Solids Struct 48:910–924 CrossRefGoogle Scholar
  10. 10.
    Baniassadi M, Ghazavizadeh A, Rahmani R, Abrinia K (2010) A novel semi-inverse solution method for elastoplastic torsion of heat treated rods. Meccanica 45:375–392 CrossRefGoogle Scholar
  11. 11.
    Wan H, Delale F (2010) A structural mechanics approach for predicting the mechanical properties of carbon nanotubes. Meccanica 45:43–51 CrossRefzbMATHGoogle Scholar
  12. 12.
    Zhilin PA (2006) Nonlinear theory of thin rods. In: Indeitsev DA, Ivanova EA, Krivtsov AM (eds) Advanced problems in mechanics, vol 2. Instit Problems Mech Eng RAS Publ, St Petersburg, pp 227–249 Google Scholar
  13. 13.
    Zhilin PA (2007) Applied mechanics: theory of thin elastic rods. Politekhn Univ Publ, St Petersburg (in Russian) Google Scholar
  14. 14.
    Green AE, Naghdi PM (1979) On thermal effects in the theory of rods. Int J Solids Struct 15:829–853 CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Rubin MB (2000) Cosserat theories: shells, rods, and points. Kluwer Academic, Dordrecht zbMATHGoogle Scholar
  16. 16.
    Nunziato JW, Cowin SC (1979) A nonlinear theory of elastic materials with voids. Arch Ration Mech Anal 72:175–201 CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Cowin SC, Nunziato JW (1983) Linear elastic materials with voids. J Elast 13:125–147 CrossRefzbMATHGoogle Scholar
  18. 18.
    Bîrsan M, Altenbach H (2011) Theory of thin thermoelastic rods made of porous materials. Arch Appl Mech doi: 10.1007/s00419-010-0490-z Google Scholar
  19. 19.
    Lurie AI (2005) Theory of elasticity. Springer, Berlin CrossRefGoogle Scholar
  20. 20.
    Lebedev LP, Cloud MJ, Eremeyev VA (2010) Tensor analysis with applications in mechanics. World Scientific, Singapore CrossRefzbMATHGoogle Scholar
  21. 21.
    Brezis H (1992) Analyse fonctionelle: Théorie et applications. Masson, Paris Google Scholar
  22. 22.
    Capriz G (1989) Continua with microstructure. Springer, New York CrossRefzbMATHGoogle Scholar
  23. 23.
    Pazy A (1983) Semigroups of linear operators and applications to partial differential equations. Springer, New York CrossRefzbMATHGoogle Scholar
  24. 24.
    Vrabie II (2003) C 0-Semigroups and applications. North-Holland/Elsevier, Amsterdam zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of MathematicsUniversity “A.I. Cuza” of IaşiIaşiRomania
  2. 2.Faculty of Civil Engineering and ArchitectureLublin University of TechnologyLublinPoland
  3. 3.Faculty of Mechanical EngineeringOtto-von-Guericke-UniversityMagdeburgGermany

Personalised recommendations