, Volume 46, Issue 1, pp 195–205 | Cite as

Force/position control of parallel robots using exteroceptive pose measurements

  • S. Bellakehal
  • N. Andreff
  • Y. MezouarEmail author
  • M. Tadjine
Parallel Manipulators


The aim of this paper is to study force and position control of kinematic parallel machines. Relying on a recent work showing that computed torque control in Cartesian space is suitable for parallel structures, we propose a parallel force position control scheme of a parallel robot based on the visual servoing of the end effector pose. Simulation results show the efficiency of the proposed approach.


Parallel robots Force control Parallel control Visual servoing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ait-Aider O, Andreff N, Martinet P, Lavest J-M (2006) Simultaneous pose and velocity measurement by vision for high-speed robots. In: IEEE int conf on robotics and automation (ICRA), Orlando, Florida, May 15–19, 2006, pp 3742–3747 Google Scholar
  2. 2.
    Amirat Y, Artigue F, Pontnau J (1991) Force feedback control of a six dof parallel robot: application to assembly in car manufacturing. Rev Autom Prod Appl 4(2):109–121 Google Scholar
  3. 3.
    Baeten J, Bruyninckx H, De Schutter J (2003) Integrated vision/force robotic servoing in the task frame formalism. Int J Robot Res 22(10–11):941–954 CrossRefGoogle Scholar
  4. 4.
    Bruzzone LE, Molfino RM, Zoppi M (2002) Modelling and control of peg-in-hole assembly performed by translational robot. In: Proc of the IASTED international conference on modelling, identification and control, Innsbruck, Austria, February 18–21, 2002, pp 512–517 Google Scholar
  5. 5.
    Caccavale F, Siciliano B, Villani L (2003) The tricept robot: Dynamics and impedance control. In: IEEE/ASME transactions on mechatronics, vol 8, pp 263–268 Google Scholar
  6. 6.
    Callegari M, Suardi A (2003) On the force-controlled assembly operations of a new parallel kinematics manipulator. In: Proc of the Mediterranean conference on control and automation, Rhodes Google Scholar
  7. 7.
    Chiaverini S, Sciavicco L (1993) The parallel approach to force/position control of robotic manipulators. IEEE Trans Robot Autom 9(4):361–373 CrossRefGoogle Scholar
  8. 8.
    Comport AI, Marchand E, Pressigout M, Chaumette F (2006) Real-time markerless tracking for augmented reality: the virtual visual servoing framework. IEEE Trans Vis Comput Graph 12(4):615–628 CrossRefGoogle Scholar
  9. 9.
    Dahmouche R, Ait-Aider O, Andreff N, Mezouar Y (2008) High-speed pose and velocity measurement from vision. In: IEEE int conf on robotics and automation (ICRA), Pasadena, California, May 19–23, 2008 Google Scholar
  10. 10.
    Dallej T, Andreff N, Mezouar Y, Martinet P (2006) 3D pose visual servoing relieves parallel robot control from joint sensing. In: IEEE/RSJ international conference on intelligent robots and systems, IROS’2006, Beijing, China, October 2006, pp 4291–4296 CrossRefGoogle Scholar
  11. 11.
    Dasgupta B, Mruthyunjaya TS (1998) Closed form dynamic equations of the general Stewart platform through the Newton-Euler approach. Mech Mach Theory 33(7):993–1012 CrossRefMathSciNetGoogle Scholar
  12. 12.
    Dementhon D, Davis LS (1995) Model-based object pose in 25 lines of code. Int J Comput Vis 15(1/2):123–141 CrossRefGoogle Scholar
  13. 13.
    DeSchutter J, Bruynincks H, Spong MW (1997) Force control: a bird’s eye view. In: IEEE CSS/RAS int workshop on control problems in robotics and automation: future directions, San Diego, December 1997 Google Scholar
  14. 14.
    Fasse ED, Gosselin CM (1998) On the spatial impedance control of Gough-Stewart platforms. In: IEEE int conf on robotics and automation (ICRA), Leuven, Belgium, May 1998, pp 1749–1754 Google Scholar
  15. 15.
    Fraisse P, Dauchez P, Pierrot F (2007) Robust force control strategy based on the virtual environment concept. In: Advanced robotics, vol 21, pp 485–498 Google Scholar
  16. 16.
    Hogan N (1985) Impedance control approach manipulation part I, II, III. J Dyn Syst Meas Control 107(1):1–24 zbMATHCrossRefGoogle Scholar
  17. 17.
    Huang C, Liu L, Wang X, Shi S (2007) Robust scheme of global parallel force/position regulators for robot manipulators under environment uncertainty. J Control Theory Appl 5(3):271–277 CrossRefMathSciNetGoogle Scholar
  18. 18.
    Khalil W, Guegan S (2002) A novel solution for the dynamic modeling of Gough-Stewart manipulators. In: IEEE int conf on robotics and automation (ICRA), Washington, pp 816–822 Google Scholar
  19. 19.
    Khalil W, Ibrahim O (2007) General solution for the dynamic modelling of parallel robots. J Intell Robot Syst 49:19–37 CrossRefGoogle Scholar
  20. 20.
    Khatib O (1987) A unified approach for motion and force control of robot manipulators: The operational space formulation. IEEE J Robot Autom 3:43–53 CrossRefGoogle Scholar
  21. 21.
    Merlet JP (1988) Force feedback control of parallel manipulators. In: IEEE int conf on robotics and automation (ICRA), vol 3, Philadelphia, Pennsylvania, April 1988, pp 1484–1489 Google Scholar
  22. 22.
    Merlet JP (1999) Parallel robots. Kluwer Academic, Dordrecht Google Scholar
  23. 23.
    Mezouar Y, Prats M, Martinet P (2007) External hybrid vision/force control. In: 13th international conference on advanced robotics, ICAR’07, Jeju, Korea, August 2007, pp 170–175 Google Scholar
  24. 24.
    Morel G, Malis E, Boudet S (1998) Impedance based combination of visual and force control. In: IEEE int conf on robotics and automation (ICRA), Leuven, Belgium, May 1998, pp 1743–1748 Google Scholar
  25. 25.
    Muller A, Maier P (2001) Kinematic and dynamic properties of parallel manipulators. Multibody Syst Dyn 5(3):223–249 CrossRefGoogle Scholar
  26. 26.
    Nelson BJ, Morrow JD, Khosla PK (1995) Fast stable transitions with a stiff manipulator using force and vision feedback. In: Int conf on intelligent robots and systems, vol 2, Pittsburgh, August 1995, pp 90–95 Google Scholar
  27. 27.
    Paccot F, Lemoine P, Andreff N, Chablat D, Martinet P (2007) Enhancing tracking performances of parallel kinematic machines. In: 12th IFToMM world congress, Besancon, France, June 2007 Google Scholar
  28. 28.
    Paccot F, Andreff N, Martinet P (2008) A vision-based computed torque control for parallel kinematic machines. In: IEEE international conference on robotics and automation (ICRA’08), Pasadena, USA, May 2008, pp 1556–1561 CrossRefGoogle Scholar
  29. 29.
    Paccot F, Andreff N, Martinet P (2009) A review on dynamic control of parallel kinematic machines: theory and experiments. Int J Robot Res 28(3):395–416 CrossRefGoogle Scholar
  30. 30.
    Perdereau V, Drouin M (1993) A new scheme for hybrid force-position control. Robotica 11:453–464 CrossRefGoogle Scholar
  31. 31.
    Pomares J, Garcia GJ, Torres F (2007) A robust approach to control robot manipulators by fusing visual and force information. J Intell Robot Syst 48:437–456 CrossRefGoogle Scholar
  32. 32.
    Raibert MH, Craig JJ (1981) Hybrid position force control of manipulators. J Dyn Syst Meas Control 103(2):126–133 CrossRefGoogle Scholar
  33. 33.
    Saadia N, Amirat Y, Pontnau J, Cherif R (1997) Force feedback control of an assembly robot by neural networks. In: Int conf on artificial neural networks (ICANN), vol 1327, Lausanne, October 8–10, 1997 Google Scholar
  34. 34.
    Satya SM, Ferreira PM, Spong MW (1995) Hybrid control of a planar 3-dof parallel manipulator for machining operations. In: Trans of the NAMRI/SME, vol 23, pp 273–280 Google Scholar
  35. 35.
    Shirai S, Inoue H (1973) Guiding a robot by visual feedback in assembling tasks. In: Pattern recognition, vol 5, pp 99–108 Google Scholar
  36. 36.
    Tarokh M (2007) Real time forward kinematics solutions for general Stewart platforms. In: IEEE int conf on robotics and automation (ICRA), Rome, Italy, April 10–14, 2007 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • S. Bellakehal
    • 1
  • N. Andreff
    • 1
  • Y. Mezouar
    • 1
    Email author
  • M. Tadjine
    • 2
  1. 1.LASMEA–CNRS–Université Blaise PascalAubièreFrance
  2. 2.Process Control LaboratoryENPAlgerAlgeria

Personalised recommendations