Advertisement

Meccanica

, Volume 46, Issue 1, pp 183–194 | Cite as

Mapping similarity between parallel and serial architecture kinematics

  • Paul Zsombor-MurrayEmail author
  • Anton Gfrerrer
Parallel Manipulators

Abstract

First the principles of mapping spatial points to surfaces is introduced in the context of the inverse kinematics of a general six revolute serial wrist partitioned robot. Then the advantage of choosing ideal frames is illustrated by showing that in the case of some architectures an image space formulation, though possible, may be an impediment to clear geometric insight and a satisfactory and much simpler solution. After showing how the general point mapping transformation is reduced to classical Blaschke-Grünwald planar mapping a novel three legged planar robot’s direct kinematics is solved in image space and then using conventional “distance” constraints. The purpose is to show why the latter approach yields spurious solutions and how the displacement pole rotation performed with kinematic mapping reliably avoids this problem. In conclusion certain other new and/or interesting reduced mobility parallel robots are discussed briefly to point out some advantages and insights gained with an image space approach. Particular effort is made to expose in detail how mapping simplifies and extends the solution of direct kinematics pertaining to Calvel’s “Delta” 3D translational robot.

Keywords

Kinematic mapping Parallel Serial Manipulator Inverse Direct Kinematics Distance Constraints 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angeles J, Caro S, Khan W, Morozov A (2008) Kinetostatic design of an innovative Schönflies motion generator. J Mech Eng Sci 220:935–943 Google Scholar
  2. 2.
    Blaschke W (1960) Kinematik und Quaternionen. VEB Deutscher Verlag der Wissenschaften, Berlin zbMATHGoogle Scholar
  3. 3.
    Bottema O, Roth B (1990) Theoretical kinematics. Dover, New York, ISBN 0-486-66346-9 zbMATHGoogle Scholar
  4. 4.
    Brunnthaler K, Pfurner M, Husty ML (2006) Synthesis of planar four-bar mechanisms. Trans Can Soc Mech Eng 30(2):297–313 Google Scholar
  5. 5.
    Clavel R (1988) Delta, a fast robot with parallel geometry. In: 18th int symp on industrial robots. IFS Publications, Lausanne, pp 91–100 Google Scholar
  6. 6.
  7. 7.
    Gauthier J-F (2008) Contributions to the optimum design of Schönflies motion generators. M Eng thesis, McGill University Google Scholar
  8. 8.
    Husty ML (1996) An algorithm for solving the direct kinematics of general Stewart-Gough platforms. Mech Mach Theory 31(4):365–380 CrossRefGoogle Scholar
  9. 9.
    Husty ML (2006) Algebraic methods in mechanisms analysis and synthesis. http://geometrie.uibk.ac.at/institutangehorig/dld/Alg-geom-husty-final.pdf, 18 pp
  10. 10.
    Husty M, Pfurner M, Schröcker H-P (2005) A new and efficient algorithm for the inverse kinematics of a general serial 6R manipulator. Mech Mach Theory 42(1):365–380 Google Scholar
  11. 11.
    Husty ML, Pfurner M, Schröcker H-P, Brunnthaler K (2007) Algebraic methods in mechanism analysis and synthesis. Robotica 25(6):661–675 CrossRefGoogle Scholar
  12. 12.
    Nabat V, Rodriguez M, Company O, Pierrot F, Dauchez P (2005) Very fast Schoenflies motion generator. IEEE Pub 0-7803-9484-4/05, pp 365–370 Google Scholar
  13. 13.
    Ottaviano EM, Husty ML, Ceccarelli M (2006) Identification of the workspace boundary of a general 3-R manipulator. J Mech Des 128(1):236–242 CrossRefGoogle Scholar
  14. 14.
    Pernkopf F, Husty ML (2006) Workspace analysis of Stewart-Gough-type parallel manipulators. J Mech Eng Sci 220(7):1019–1032 CrossRefGoogle Scholar
  15. 15.
    Schröcker H-P, Husty ML, McCarthy JMM (2007) Kinematic mapping based assembly mode evaluation of planar four-bar mechanisms. J Mech Des 129(9):924–929 CrossRefGoogle Scholar
  16. 16.
    Seo T, In W, Kim J (2009) A new planar 3-DOF parallel mechanism with continuous 360-degree rotational capability. J Mech Sci Technol, Korean Soc Mech Eng 23(11):3088–3094 Google Scholar
  17. 17.
    Study E (1903) Die Geometrie der Dynamen. Leipzig Google Scholar
  18. 18.
    Zsombor-Murray PJ (2009) An improved approach to the kinematics of Clavel’s DELTA robot. http://www.cim.mcgill.ca/~paul/Delta9Af.pdf, 6 pp
  19. 19.
    Zsombor-Murray PJ, Gfrerrer A (2010) A unified approach to direct kinematics of some reduced motion parallel manipulators. ASME J Mech Robot 2(2), 021006. doi: 10.1115/1.4001095 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringMcGill UniversityMontréalCanada
  2. 2.Institut für GeometrieTU-GrazGrazAustria

Personalised recommendations