Advertisement

Meccanica

, Volume 46, Issue 1, pp 101–111 | Cite as

Optimised assembly mode reconfiguration of the 5-DOF Gantry-Tau using mixed-integer programming

  • Matthew Murray
  • Geir Hovland
  • Torgny Brogårdh
Parallel Manipulators

Abstract

This paper presents a systematic approach based on Mixed Integer Linear Programming for finding an optimal singularity-free reconfiguration path of the 5-DOF Gantry-Tau parallel kinematic machine. The results in the paper demonstrate that singularity-free reconfiguration (change of assembly mode) of the machine is possible, which significantly increases the usable workspace. The method has been applied to a full-scale prototype and the singularity-free path has been verified both in simulations and with physical experiments using real-time control of the prototype. The toolpoint positions have been verified by using measurements from a high precision laser tracker.

Keywords

Parallel kinematic machine Singularity avoidance Assembly mode Reconfiguration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Majou F, Wenger P, Chablat D (2001) The design of parallel kinematic machine tools using kinetostatic performance criteria. In: Proc 3rd intl conf on metal cutting, Metz, France Google Scholar
  2. 2.
    Budde C, Last P, Hesselbach J (2005) Workspace enlargement of a triglide robot by changing working and assembly mode. In: Proc of IASTED intl conf on robotics and applications, Oct 2005, pp 244–248 Google Scholar
  3. 3.
    Chablat D, Wenger P (1998) Working modes and aspects in fully parallel manipulators. In: Proc of the 1998 IEEE intl conf on robotics and automation, Leuven, Belgium, pp 1964–1969. doi: 10.1109/ROBOT.1998.680601 Google Scholar
  4. 4.
    Chablat D, Wenger P (2004) The kinematic analysis of a symmetrical three-degree-of-freedom planar parallel manipulator. In: Symp on robot design, dyn and control, Montreal Google Scholar
  5. 5.
    Zein M, Wenger P, Chablat D (2006) Singular curves and cusp points int the joint space of 3-RPR parallel manipulators. In: Proc of the 2006 IEEE intl conf on robotics and automation, Orlando, Florida, May 2006, pp 777–782. doi: 10.1109/ROBOT.2006.1641804 CrossRefGoogle Scholar
  6. 6.
    Clavel R (1990). Device for the movement and positioning of an element in space. US Patent No 4.976.582, 11 Dec 1990 Google Scholar
  7. 7.
    Murray M, Hovland G, Brogårdh T (2006) Collision-free workspace design of the 5-axis Gantry-Tau parallel kinematic machine. In: Proc of the 2006 IEEE/RSJ intl conf on intelligent robots and systems (IROS 2006), Beijing, Oct 2006, pp 2150–2155, doi: 10.1109/IROS.2006.282497 Google Scholar
  8. 8.
    Hovland G, Choux M, Murray M, Tyapin I, Brogårdh T (2008) The Gantry-Tau—summary of latest development at ABB, university of Agder and university of Queensland. In: 3rd Intl coll robotic systems for handling and assembly, the coll research centre SFB 562, Braunschweig Google Scholar
  9. 9.
    Schrijver A (1986) Theory of linear and integer programming. Wiley, New York MATHGoogle Scholar
  10. 10.
    Bemporad A, Morari M (1999) Control of systems integrating logic, dynamics and constraints. Automatica 3(35):407–427. doi: 10.1016/S0005-1098(98)00178-2 CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Matthew Murray
    • 1
  • Geir Hovland
    • 2
  • Torgny Brogårdh
    • 3
  1. 1.University of QueenslandBrisbaneAustralia
  2. 2.University of AgderGrimstadNorway
  3. 3.ABB Corporate ResearchVästeråsSweden

Personalised recommendations