Advertisement

Meccanica

, Volume 46, Issue 1, pp 75–88 | Cite as

Comparison of 3-RPR planar parallel manipulators with regard to their kinetostatic performance and sensitivity to geometric uncertainties

  • Nicolas Binaud
  • Stéphane Caro
  • Philippe Wenger
Parallel Manipulators

Abstract

This paper deals with the sensitivity analysis of 3-RPR planar parallel manipulators. First, the manipulators under study as well as their degeneracy conditions are presented. Then, an optimization problem is formulated in order to obtain their maximal regular dexterous workspace. Moreover, the sensitivity coefficients of the pose of the manipulator moving platform to variations in the geometric parameters and in the actuated variables are expressed algebraically. Two aggregate sensitivity indices are determined, one related to the orientation of the manipulator moving platform and another one related to its position. Then, we compare two non-degenerate and two degenerate 3-RPR planar parallel manipulators with regard to their dexterity, workspace size and sensitivity. Finally, two actuating modes are compared with regard to their sensitivity.

Keywords

Sensitivity analysis Degenerate manipulators Regular dextrous workspace Transmission angle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wang J, Masory O (1993) On the accuracy of a Stewart platform—Part I, The effect of manufacturing tolerances. In: Proceedings of the IEEE international conference on robotics automation, ICRA’93, Atlanta, USA, pp 114–120 Google Scholar
  2. 2.
    Kim HS, Choi YJ (2000) The kinematic error bound analysis of the Stewart platform. J Robot Syst 17:63–73 MATHCrossRefGoogle Scholar
  3. 3.
    Kim HS, Tsai L-W (2003) Design optimization of a Cartesian parallel manipulator. ASME J Mech Des 125:43–51 CrossRefGoogle Scholar
  4. 4.
    Caro S, Bennis F, Wenger P (2005) Tolerance synthesis of mechanisms: A robust design approach. ASME J Mech Des 127:86–94 CrossRefGoogle Scholar
  5. 5.
    Cardou P, Bouchard S, Gosselin C (2010) Kinematic-sensitivity indices for dimensionally nonhomogeneous Jacobian matrices. IEEE Trans Robot 26(1):166–173 CrossRefGoogle Scholar
  6. 6.
    Caro S, Wenger P, Bennis F, Chablat D (2006) Sensitivity analysis of the orthoglide, A 3-DOF translational parallel kinematic machine. ASME J Mech Des 128:392–402 CrossRefGoogle Scholar
  7. 7.
    Yu A, Bonev IA, Zsombor-Murray PJ (2007) Geometric method for the accuracy analysis of a class of 3-DOF planar parallel robots. Mech Mach Theory 43(3):364–375 CrossRefGoogle Scholar
  8. 8.
    Meng J, Zhang D, Li Z (2009) Accuracy analysis of parallel manipulators with joint clearance. ASME J Mech Des 131:011013 CrossRefGoogle Scholar
  9. 9.
    Binaud N, Caro S, Wenger P (2010) Sensitivity comparison of planar parallel manipulators. Mech Mach Theory 45:1477–1490 MATHCrossRefGoogle Scholar
  10. 10.
    Hunt KH (1978) Kinematic geometry of mechanisms. Oxford University Press, Cambridge MATHGoogle Scholar
  11. 11.
    Hunt KH (1983) Structural kinematics of in-parallel actuated robot arms. J Mech Transm Autom Des 105(4):705–712 CrossRefGoogle Scholar
  12. 12.
    Gosselin C, Sefrioui J, Richard MJ (1992) Solutions polynomiales au problème de la cinématique des manipulateurs parallèles plans à trois degrés de liberté. Mech Mach Theory 27:107–119 CrossRefGoogle Scholar
  13. 13.
    Pennock GR, Kassner DJ (1990) Kinematic analysis of a planar eight-bar linkage: application to a platform-type robot. In: ASME proc of the 21th biennial mechanisms conf, Chicago, pp 37–43 Google Scholar
  14. 14.
    Gosselin CM, Merlet J-P (1994) On the direct kinematics of planar parallel manipulators: special architectures and number of solutions. Mech Mach Theory 29(8):1083–1097 CrossRefGoogle Scholar
  15. 15.
    Kong X, Gosselin CM (2001) Forward displacement analysis of third-class analytic 3-RPR planar parallel manipulators. Mech Mach Theory 36:1009–1018 MATHCrossRefGoogle Scholar
  16. 16.
    Wenger P, Chablat D, Zein M (2007) Degeneracy study of the forward kinematics of planar 3-RPR parallel manipulators. ASME J Mech Des 129:1265–1268 CrossRefGoogle Scholar
  17. 17.
    Liu X-J, Wang J, Pritschow G (2006) Kinematics, singularity and workspace of planar 5R symmetrical parallel mechanisms. Mech Mach Theory 41(2):145–169 MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Liu X-J, Wang J, Pritschow G (2006) Performance atlases and optimum design of planar 5R symmetrical parallel mechanisms. Mech Mach Theory 41(2):119–144 MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Liu X-J, Wang J, Pritschow G (2006) On the optimal design of the PRRRP 2-DOF parallel mechanism. Mech Mach Theory 41(9):1111–1130 MATHCrossRefGoogle Scholar
  20. 20.
    Caro S, Chablat D, Wenger P, Angeles J (2003) Isoconditioning loci of planar three-dof parallel manipulators. In: Gogu G, Coutellier D, Chedmail P, Ray P (eds) Recent advances in integrated design and manufacturing in mechanical engineering. Kluwer Academic, Dordrecht, pp 129–138 Google Scholar
  21. 21.
    Caro S, Binaud N, Wenger P (2009) Sensitivity analysis of 3-RPR planar parallel manipulators. ASME J Mech Des 131:121005 CrossRefGoogle Scholar
  22. 22.
    Rakotomanga N, Chablat D, Caro S (2008) Kinetostatic performance of a planar parallel mechanism with variable actuation. In: Advances in robot kinematics, pp 311–320 Google Scholar
  23. 23.
    Arakelian V, Briot S, Glazunov V (2008) Increase of singularity-free zones in the workspace of parallel manipulators using mechanisms of variable structure. Mech Mach Theory 43(9):1129–1140 MATHCrossRefGoogle Scholar
  24. 24.
    Ranjbaran F, Angeles J, Gonzalez-Palacios MA, Patel RV (1995) The mechanical design of a seven-axes manipulator with kinematic isotropy. ASME J Intell Robot Syst 14(1):21–41 MATHCrossRefGoogle Scholar
  25. 25.
    Al-Sultan KS, Al-Fawzan MA (1997) A tabu search Hook and Jeeves algorithm for unconstrained optimization. Eur J Oper Res 103:198–208 MATHCrossRefGoogle Scholar
  26. 26.
    Gosselin CM, Angeles J (1990) Singularity analysis of closed-loop kinematic chains. IEEE Trans Robot Autom 6(3):281–290 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Nicolas Binaud
    • 1
  • Stéphane Caro
    • 1
  • Philippe Wenger
    • 1
  1. 1.UMR CNRS n° 6597Institut de Recherche en Communications et Cybernétique de NantesNantesFrance

Personalised recommendations