Meccanica

, Volume 46, Issue 3, pp 597–607 | Cite as

Sliding onset of nanoclusters: a new AFM-based approach

Asperity contacts & lubrication aspects

Abstract

In the last twenty years the Atomic Force Microscope (AFM) is become one of the most important instruments to perform characterization at the nanoscale and to achieve direct control of nano-objects. In this paper a quantitative method to estimate the detachment energy of gold spherical nanoclusters with typical diameters of 13, 24 and 42 nm deposited on silicon dioxide and Highly Oriented Pyrolytic Graphite (HOPG) by AFM measures with Amplitude Modulation (AM-AFM) feedback is presented. It is based on the use of AFM tip oscillations to induce clusters detachments and on the substrate mapping with phase signal. With this powerful method is possible to move in a very controlled way nanoparticles selected by dimensions. All experiments have been performed in air conditions using a commercial AFM microscope with cantilevers characterized by nominal spring constants lying between 5 and 50 N/m.

Keywords

AFM Nanotribology Nanoclusters Manipulation Static friction Nanoparticles 

Abbreviations

AFM:

Atomic Force Microscopy

AM-AFM:

Amplitude Modulation AFM

FM-AFM:

Frequency Modulation AFM

NC-AFM:

Non Contact AFM

UHV:

Ultra High Vacuum

HOPG:

Highly Oriented Pyrolytic Graphite

SEM:

Scanning Electron Microscopy

TEM:

Transmission Electron Microscopy

FFM:

Friction Force Microscopy

SFA:

Surface Force Apparatus

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Czichos H (2001) Tribology and its many facets: from macroscopic to microscopic and nano-scale phenomena. Meccanica 36:605–615 MATHCrossRefGoogle Scholar
  2. 2.
    Robbins MO, Muser MH (2000) Computer simulation of friction, lubrication and wear. In: Bhushan B (ed) Handbook of modern tribology. CRC Press, Boca Raton Google Scholar
  3. 3.
    Muser MH, Urbakh M, Robbins MO (2003) Statistical mechanics of static and low-velocity kinetic friction. Adv Chem Phys 126:187 CrossRefGoogle Scholar
  4. 4.
    Vanossi A, OM Braun (2007) Driven dynamics of simplified tribological models. J Phys Condens Matter 19:305017–305037 CrossRefGoogle Scholar
  5. 5.
    Maier S, Gnecco E, Baratoff A, Bennewitz R, Meyer E (2008) Atomic-scale friction modulated by a buried interface: Combined atomic and friction force microscopy experiments. Phys Rev B 78:045432-1-5 ADSGoogle Scholar
  6. 6.
    Gnecco E, Meyer E (2007) Fundamentals of friction and wear on the nanoscale. Springer, Berlin CrossRefGoogle Scholar
  7. 7.
    Bhushan B (2002) Introduction to tribology. Wiley, New York Google Scholar
  8. 8.
    Persson BNJ (2000) Sliding friction: physical principles and applications. Springer, Berlin MATHGoogle Scholar
  9. 9.
    Szlufarska I, Chandross M, Carpick RW (2008) Recent Advances in single-asperity nanotribology. J Phys D, Appl Phys 41:123001–123039 ADSCrossRefGoogle Scholar
  10. 10.
    Socoliuc A, Bennewitz R, Gnecco E, Meyer E (2004) Transition from stick-slip to continuous sliding in atomic friction: entering a new regime of ultra low friction. Phys Rev Lett 92:134301-1-4 ADSCrossRefGoogle Scholar
  11. 11.
    Schwarz UD, Zwoerner O, Koester P, Wiesendanger R (1997) Quantitative analysis of the frictional properties of solid materials at low loads. I Carbon compounds. Phys Rev B 56:6987–6996 ADSCrossRefGoogle Scholar
  12. 12.
    Dietzel D, Ritter C, Moenninghoff T, Fuchs H, Schirmeisen A, Schwarz UD (2008) Friction duality observed during nanoparticle sliding. Phys Rev Lett 101:125505-1-4 ADSCrossRefGoogle Scholar
  13. 13.
    Dietzel D, Feldmann M, Fuchs H, Schwarz UD, Schirmeisen A (2009) Transition from static to kinetic friction of metallic nanoparticles. Appl Phys Lett 95:053104 ADSCrossRefGoogle Scholar
  14. 14.
    Dietzel D, Feldmann M, Herding C, Schwarz UD, Schirmeisen A (2010) Quantifying pathways and friction of nanoparticles during controlled manipulation by contact-mode atomic force microscopy. Tribol Lett 39(3):273–281 CrossRefGoogle Scholar
  15. 15.
    Bardotti L, Jensen P, Hoareau A, Treilleux M, Cabaud B, Perez A, Cadete Santos Aires F (1996) Diffusion and aggregation of large antimony and gold clusters deposited on graphite. Surf Sci 367:276–292 ADSCrossRefGoogle Scholar
  16. 16.
    Luedtke WD, Landman U (1999) Slip diffusion and Levy flights of an adsorbed gold nanocluster. Phys Rev Lett 82:3835–3838 ADSCrossRefGoogle Scholar
  17. 17.
    Pisov S, Tosatti E, Tartaglino U, Vanossi A (2007) Gold clusters sliding on graphite: a possible quartz microbalance experiment? J Phys, Condens Matter 19:305015–305019 CrossRefGoogle Scholar
  18. 18.
    Guerra R, Tartaglino U, Vanossi A, Tosatti E (2010) Ballistic nanofriction. Nat Mater 9:634–637 ADSCrossRefGoogle Scholar
  19. 19.
    Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933 ADSCrossRefGoogle Scholar
  20. 20.
    Garcia R, Magerle R, Perez R (2007) Nanoscale compositional mapping with gentle forces. Nat Mater 6:405–411 ADSCrossRefGoogle Scholar
  21. 21.
    Garcia R, Gomez CJ, Martinez NF, Patil S, Dietz C, Magerle R (2006) Identification of nanoscale dissipation processes by dynamic atomic force microscopy. Phys Rev Lett 97:016103:016106 ADSGoogle Scholar
  22. 22.
    Martinez NF, Garcia R (2006) Measuring phase shifts and energy dissipation with amplitude modulation atomic force microscopy. Nanotechnology 17:167–172 ADSCrossRefGoogle Scholar
  23. 23.
    Anczykowski B, Gotsmann B, Fuchs H, Cleveland JP, Elings VB (1999) How to measure energy dissipation in dynamic mode atomic force microscopy. Appl Surf Sci 140:376–382 ADSCrossRefGoogle Scholar
  24. 24.
    Mougin K, Gnecco E, Rao A, Cuberes MT, Jayaraman S, McFarland EW, Haidara H, Meyer E (2008) Manipulation of gold nanoparticles: influence of surface chemistry, temperature, and environment (vacuum vs ambient atmosphere). Langmuir 24:1577–1581 CrossRefGoogle Scholar
  25. 25.
    Paolicelli G, Rovatti M, Vanossi A, Valeri S (2009) Controlling single cluster dynamics at the nanoscale. Appl Phys Lett 95:143121-1-3 ADSCrossRefGoogle Scholar
  26. 26.
    Rao A, Gnecco E, Marchetto D, Mougin K, Schönenberger M, Valeri S, Meyer E (2009) The analytical relations between particles and probe trajectories in atomic force microscope nanomanipulation. Nanotechnology 20:115706–115712 ADSCrossRefGoogle Scholar
  27. 27.
    Sader JE, Chon JWM, Mulvaney P (1999) Calibration of rectangular atomic force microscope cantilevers. Rev Sci Instrum 70:3967–3969 ADSCrossRefGoogle Scholar
  28. 28.
    Aruliah DA, Muser MH, Schwarz UD (2005) Calculation of the threshold force and threshold power to move adsorbed nanoparticles. Phys Rev B 71:085406 ADSCrossRefGoogle Scholar
  29. 29.
    Ritter C, Heyde M, Schwarz UD, Rademann K (2002) Controlled translational manipulation of small latex spheres by dynamic force microscopy. Langmuir 18:7798–7803 CrossRefGoogle Scholar
  30. 30.
    Ritter C, Heyde M, Stegemann B, Rademann K (2005) Contact-area dependence of frictional forces: moving adsorbed antimony nanoparticles. Phys Rev B 71:085405-1-7 ADSCrossRefGoogle Scholar
  31. 31.
    Rao A, Wille ML, Gnecco E, Mougin K, Meyer E (2009) Trajectory fluctuations accompanying the manipulation of spherical nanoparticles. Phys Rev B 80:193405 ADSCrossRefGoogle Scholar
  32. 32.
    Paolicelli G, Mougin K, Vanossi A, Valeri S (2008) Adhesion detachment and movement of gold nanoclusters induced by dynamic AFM. J Phys Condens Matter 20:354011–354016 CrossRefGoogle Scholar
  33. 33.
    Maruyama Y (2004) Temperature dependence of Levy-type stick-slip diffusion of a gold nanoclusters on graphite. Phys Rev B 69:245408-1-6 ADSCrossRefGoogle Scholar
  34. 34.
    Jensen P (1999) Growth of nanostructures by cluster deposition: experiments and simple model. Rev Mod Phys 71:1695–1735 ADSCrossRefGoogle Scholar
  35. 35.
    Bardotti L, Jensen P, Hoareau A, Treilleux M, Cabaud B, Perez A, Cadete Santos Aires F (1996) Diffusion and aggregation of large antimony and gold clusters deposited on graphite. Surf Sci 367:276–292 ADSCrossRefGoogle Scholar
  36. 36.
    Huang X, Qian W, El-Sayed IH, Ma El-Sayed (2007) The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy. Lasers Surg Med 39:747–753 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • M. Rovatti
    • 1
    • 2
  • G. Paolicelli
    • 2
  • A. Vanossi
    • 3
    • 4
  • S. Valeri
    • 1
    • 2
  1. 1.Dipartimento di FisicaUniversità degli Studi di Modena e Reggio EmiliaModenaItaly
  2. 2.CNR, Istituto NanoscienzeModenaItaly
  3. 3.International School for Advanced Studies (SISSA)TriesteItaly
  4. 4.CNR-Istituto Officina dei MaterialiTriesteItaly

Personalised recommendations