Meccanica

, Volume 46, Issue 5, pp 943–958 | Cite as

An advanced multibody code for handling and stability analysis of motorcycles

Article

Abstract

This work illustrates the modelling aspects of an advanced motorcycle multibody model which captures the most important features of the vehicle, including five different suspensions schemes (telescopic fork, telelever, duolever, swingarm and paralever) all provided with their own flexibilities. Several lumped stiffness are used to model the structural compliance of the frame as well as the flexibility of the transmission system. A passive rider model which simulates the interaction of the rider with the handlebar and the chassis and a 3D road-tire model which takes into account both the carcass geometry and compliance are also included.

The presented mathematical model performs non-linear time domain simulations, non-linear steady state analysis, linear stability and frequency domain analyses. Some simulation examples are presented: a steady state cornering manoeuvre where the decomposition of steering torque in its main components is carried out, a stability analysis where the effects of rider’s impedance and structural flexibilities on weave and wobble vibration modes is highlighted, a stability analysis of a braking motorcycle which experiences a chatter instability and a lane change manoeuvre where the main handling indexes are computed.

Keywords

Motorcycle dynamics Two-wheeled vehicle Multibody Stability Weave Wobble Rider 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sharp RS (2001) Stability, control and steering responses of motorcycles. Veh Syst Dyn 35(4–5):291–318 CrossRefGoogle Scholar
  2. 2.
    Spierings PTJ (1981) The effect of lateral front fork flexibility on the vibration modes of straight-running single-track vehicles. Veh Syst Dyn 10:21–35 CrossRefGoogle Scholar
  3. 3.
    Koenen C, Pacejka HB (1982) Influence of frame elasticity, simple rider body dynamics and tyre moments on free vibrations of motorcycles in curves. In: Proc of the IAVSD symposium Google Scholar
  4. 4.
    Hikichi T, Takaci K (1990) Dynamic characteristics of a motorcycle with a single-side supported swing arm. In: SAE 905214, pp 721–731 Google Scholar
  5. 5.
    Cossalter V, Lot R, Massaro M (2007) The influence of frame compliance and rider mobility on the scooter stability. Veh Syst Dyn 45:315–326 CrossRefGoogle Scholar
  6. 6.
    Katayama T, Aoki A, Nishimi T, Okayama T (1987) Measurement of structural properties of riders. In: Proc of the 4th international pacific conference on automotive engineering. Melbourne, Australia Google Scholar
  7. 7.
    Nishimi T, Aoki A, Katayama T (1985) Analysis of straight running stability of motorcycles. In: Proc of the 10th international technical conference on experimental safety vehicles. Oxford, England Google Scholar
  8. 8.
    Marumo Y, Katayama T (2005) Effect of motorcycle tandem riding on weave mode stability. Thesis collection of the J Autom Technol Assoc 36(6) Google Scholar
  9. 9.
    Limebeer DJN, Sharp RS (2004) Nonlinear steering oscillations of motorcycles. In: Proc of the 43rd IEEE conference on decision and control. Atlantis, Paradise Island, Bahamas, December 14–17, 2004 Google Scholar
  10. 10.
    Sharp RS, Limebeer DJN (2004) On steering wobble oscillations of motorcycles. Proc IMechE, Part C, J Mech Eng Sci 18:1449–1456 CrossRefGoogle Scholar
  11. 11.
    Pick AJ, Cole DJ (2004) Neuromuscular dynamics and the vehicle steering task. Veh Syst Dyn Suppl 41:l82–l91 Google Scholar
  12. 12.
    Pick AJ, Cole DJ (2007) Dynamic properties of a driver’s arms holding a steering wheel. Proc IMechE, Part D, J Automob Eng 221 Google Scholar
  13. 13.
    Cossalter V, Doria A, Lot R, Massaro M (2010) The effect of rider’s passive steering impedance on motorcycle stability: identification and analysis. Meccanica. doi:10.1007/s11012-010-9304-1
  14. 14.
    Cossalter V, Doria A, Lot R, Maso M (2006) A motorcycle riding simulator for assessing the riding ability and for testing rider assistance systems. In: DSC 2006 Europe. Paris, October 4–6, 2006 Google Scholar
  15. 15.
    Cossalter V, Lot R, Maso M, Massaro M, Sartori R (2008) A motorcycle riding simulator for the improvement of the rider safety. In: Proc of the FISITA world automotive congress. Munich, Germany, 14–19 September 2008 Google Scholar
  16. 16.
    Sharp RS, Evangelou S, Limebeer DJN (2004) Advances in motorcycle dynamics. Multibody Syst Dyn 12:251–283 CrossRefMATHGoogle Scholar
  17. 17.
    Evangelou S, Limebeer DJN, Tomas-Rodriguez M (2008) Influence of road camber on motorcycle stability. J Appl Mech, Trans ASME 75 Google Scholar
  18. 18.
    Pacejka HB (2005) Tire and vehicle dynamics. SAE International. ISBN: 978-0-7680-1702-1 Google Scholar
  19. 19.
    Cossalter V, Lot R (2002) A motorcycle multi-body model for real time simulations based on the natural coordinates approach. Veh Syst Dyn 37:423–447 CrossRefGoogle Scholar
  20. 20.
    Lot R (2004) A motorcycle tire model for dynamic simulations. Meccanica 39:207–220 CrossRefMATHGoogle Scholar
  21. 21.
    Massaro M (2008) Modellazione multi-body analitica e sviluppo di strategie di controllo. PhD dissertation, University of Padova (In Italian) Google Scholar
  22. 22.
    Lot R, Da Lio M (2004) A symbolic approach for automatic generation of the equations of motion of multibody systems. Multibody Syst Dyn 12:147–172 CrossRefMATHGoogle Scholar
  23. 23.
    Genta G (1997) Motor vehicle dynamics. World Scientific, Singapore. ISBN: 9789810229115 MATHGoogle Scholar
  24. 24.
    Torok JS (2000) Analytical mechanics. Wiley, New York. ISBN: 9780471332077 Google Scholar
  25. 25.
    Lot R, Massaro M (2006) A combined model of tire and road surface for the dynamics analysis of motorcycle handling. In: Proc of the FISITA world automotive congress. Yokohama, Japan, 22–27 October 2006 Google Scholar
  26. 26.
    Cossalter V, Lot R, Massaro M (2008) The chatter of racing motorcycle. Veh Syst Dyn 46:339–353 CrossRefGoogle Scholar
  27. 27.
    Massaro M, Sartori R, Lot R (2010) Numerical investigation of engine-to-slip dynamics for motorcycle traction control applications. Veh Syst Dyn. doi:10.1080/00423110903530992
  28. 28.
    NASA (1978) Anthropometric source book. Vol I: Anthropometry for designers. NASA Reference Publication 1024 Google Scholar
  29. 29.
    Hairer E, Wanner G (1996) Solving ordinary differential equations II: Stiff and differential-algebraic problems, 2nd edn. Springer, Berlin CrossRefMATHGoogle Scholar
  30. 30.
    Garcia de Jalón J, Bayo E (1994) Kinematic and dynamic simulation of multibody systems. The real-time challenge. Springer, New York. ISBN 0-387-94096-0, 440 pp CrossRefGoogle Scholar
  31. 31.
    Cheli F, Pennestrì E (2006) Cinematica e dinamica dei sistemi multibody. CEA. ISBN: 8840813454 Google Scholar
  32. 32.
    Cossalter V, Lot R, Peretto M (2007) Steady turning of motorcycles. Proc IMechE, Part D, J Automob Eng 221(11):1343–1356 CrossRefGoogle Scholar
  33. 33.
    Cossalter V (2006) Motorcycle dynamics. www.Lulu.com. ISBN: 978-1-4303-0861-4
  34. 34.
    Cossalter V, Sadauckas J (2006) Elaboration and quantitative assessment of manoeuvrability for motorcycle lane change. Veh Syst Dyn 44(12):903–920. ISSN 0042-3114 CrossRefGoogle Scholar
  35. 35.
    Massaro M, Lot R (2007) Application of Laplace transform techniques to non-linear control optimization. In: Proc of the multibody dynamics 2007. Milano, Italy, June 25–28, 2007 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.DIMEG—Department of Innovation in Mechanics and ManagementUniversity of PadovaPadovaItaly

Personalised recommendations