Meccanica

, Volume 46, Issue 4, pp 795–801 | Cite as

Radiation effects on the thermal boundary layer flow over a moving plate with convective boundary condition

Article

Abstract

The steady laminar boundary layer flow over a moving plate in a moving fluid with convective surface boundary condition and in the presence of thermal radiation is investigated in this paper. Under certain conditions, the present problem reduces to the classical Blasius and Sakiadis problems. The effects of radiation and convective parameters on the thermal field are thoroughly examined and discussed. Dual solutions are found to exist when the plate and the fluid move in the opposite directions.

Keywords

Boundary layer Thermal radiation Convective boundary condition Dual solutions Mechanics of fluid 

List of symbols

a

Convective parameter

c

Constant

Cf

Skin friction coefficient

cp

Specific heat at constant pressure

f

Dimensionless stream function

k

Thermal conductivity

k

Mean absorption coefficient

N

Radiation parameter

Pr

Prandtl number

qr

Radiative heat flux

T

Fluid temperature

Tf

Hot fluid temperature

Tw

Plate temperature

T

Ambient temperature

u,v

Velocity components along the x and y directions, respectively

U

Composite velocity

Uw

Plate velocity

U

Free stream velocity

x,y

Cartesian coordinates along the plate and normal to it, respectively

Greek symbols

α

Thermal diffusivity

ε

Velocity ratio parameter

η

Similarity variable

θ

Dimensionless temperature

ν

Kinematic viscosity

ρ

Fluid density

σ

Stefan-Boltzmann constant

τw

Wall shear stress

ψ

Stream function

Subscripts

w

At the wall

In the free stream

Superscript

Differentiation with respect to η

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bataller RC (2008) Radiation effects in the Blasius flow. Appl Math Comput 198:333–338 MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Cortell R (2008) A numerical tackling on Sakiadis flow with thermal radiation. Chin Phys Lett 25:1340–1342 CrossRefGoogle Scholar
  3. 3.
    Abdelhafez TA (1985) Skin friction and heat transfer on a continuous flat surface moving in a parallel free stream. Int J Heat Mass Transf 28:1234–1237 CrossRefGoogle Scholar
  4. 4.
    Aziz A (2009) A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition. Commun Nonlinear Sci Numer Simul 14:1064–1068 ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    Magyari E (2010) Comment on “A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition” by A. Aziz. Commun Nonlinear Sci Numer Simul. doi:10.1016/j.cnsns.2010.03.020 MathSciNetGoogle Scholar
  6. 6.
    Bataller RC (2008) Radiation effects for the Blasius and Sakiadis flows with a convective surface boundary condition. Appl Math Comput 206:832–840 MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Afzal N, Badaruddin A, Elgarvi AA (1993) Momentum and transport on a continuous flat surface moving in a parallel stream. Int J Heat Mass Transf 36:3399–3403 MATHCrossRefGoogle Scholar
  8. 8.
    Ishak A, Nazar R, Pop I (2007) Boundary layer on a moving wall with suction and injection. Chin Phys Lett 24:2274–2276 CrossRefGoogle Scholar
  9. 9.
    Rosseland S (1936) Theoretical astrophysics. Oxford University, New York Google Scholar
  10. 10.
    Siegel R, Howell JR (1992) Thermal radiation: heat transfer, 3rd edn. Hemisphere, Washington Google Scholar
  11. 11.
    Bataller RC (2008) Similarity solutions for boundary layer flow and heat transfer of a FENE-P fluid with thermal radiation. Phys Lett A 372:2431–2439 ADSMATHCrossRefGoogle Scholar
  12. 12.
    Bataller RC (2008) Similarity solutions for flow and heat transfer of a quiescent fluid over a nonlinearly stretching surface. J Mater Process Technol 203:176–183 CrossRefGoogle Scholar
  13. 13.
    Pal D (2009) Heat and mass transfer in stagnation-point flow towards a stretching surface in the presence of buoyancy force and thermal radiation. Meccanica 44:145–158 CrossRefGoogle Scholar
  14. 14.
    Pal D, Mondal H (2009) Radiation effects on combined convection over a vertical flat plate embedded in a porous medium of variable porosity. Meccanica 44:133–144 CrossRefMathSciNetGoogle Scholar
  15. 15.
    Mukhopadhyay S, Layek GC (2009) Radiation effect on forced convective flow and heat transfer over a porous plate in a porous medium. Meccanica 44:587–597 CrossRefMathSciNetGoogle Scholar
  16. 16.
    Ishak A (2010) Thermal boundary layer flow over a stretching sheet in a micropolar fluid with radiation effect. Meccanica 45:367–373 CrossRefGoogle Scholar
  17. 17.
    Ishak A, Nazar R, Pop I (2008) Local similarity solutions for laminar boundary layer flow along a moving cylinder in a parallel stream. LNCS Comput Math 5081:224–235 CrossRefGoogle Scholar
  18. 18.
    Blasius H (1908) Grenzschichten in flüssigkeiten mit kleiner reibung. Z Math Phys 56:1–37 Google Scholar
  19. 19.
    Sakiadis BC (1961) Boundary-layer behaviour on continuous solid surfaces: I. Boundary-layer equations for two-dimensional and axisymmetric flow. AIChE J 7:26–28 CrossRefGoogle Scholar
  20. 20.
    Ishak A, Nazar R, Pop I (2006) Mixed convection boundary layers in the stagnation-point flow towards a stretching vertical sheet. Meccanica 41:509–518 MATHCrossRefGoogle Scholar
  21. 21.
    Ishak A, Nazar R, Pop I (2008) Mixed convection stagnation point flow of a micropolar fluid towards a stretching sheet. Meccanica 43:411–418 MATHCrossRefGoogle Scholar
  22. 22.
    Yacob NA, Ishak A (2010) Stagnation-point flow towards a strecthing surface immersed in a micropolar fluid with prescribed surface heat flux. Sains Malays 39:285–290 Google Scholar
  23. 23.
    Bachok N, Ishak A (2010) Flow and heat transfer over a stretching cylinder with prescribed surface heat flux. Malays J Math Sci 4(2):159–170 MathSciNetGoogle Scholar
  24. 24.
    Bachok N, Ishak A, Pop I (2010) Mixed convection boundary layer flow near the stagnation point on a vertical surface embedded in a porous medium with anisotropy effect. Transp Porous Med 82:363–373 CrossRefMathSciNetGoogle Scholar
  25. 25.
    Bachok N, Ishak A, Pop I (2010) Boundary-layer flow of nanofluids over a moving surface in a flowing fluid. Int J Thermal Sci. 49:1663–1668 CrossRefGoogle Scholar
  26. 26.
    Klemp JB, Acrivos A (1972) A method for integrating the boundary-layer equations through a region of reverse flow. J Fluid Mech 53:177–191 ADSMATHCrossRefGoogle Scholar
  27. 27.
    Merkin JH (1985) On dual solutions occurring in mixed convection in a porous medium. J Eng Math 20:171–179 CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Anuar Ishak
    • 1
  • Nor Azizah Yacob
    • 2
  • Norfifah Bachok
    • 3
  1. 1.School of Mathematical SciencesUniversiti Kebangsaan MalaysiaUKM BangiMalaysia
  2. 2.Faculty of Computer and Mathematical SciencesUniversiti Teknologi MARA PahangBandar JengkaMalaysia
  3. 3.Department of Mathematics, Faculty of ScienceUniversiti Putra MalaysiaUPM SerdangMalaysia

Personalised recommendations