Meccanica

, Volume 46, Issue 2, pp 313–323 | Cite as

Numerical investigation of a third-order ODE from thin film flow

Original Article

Abstract

We compare two finite difference schemes to solve the third-order ordinary differential equation y'''=y k from thin film flow. The boundary conditions come from Tanner’s problem for the surface tension driven flow of a thin film. We show that a central difference approximation to the third derivative in the model equation produces a solution curve with oscillations. A difference scheme based on a combination of forward and backward differences produces a smooth accurate solution curve. Both the 0-stability and von Neumann stability properties of the different finite difference schemes are analyzed. The solution curves obtained from both approaches are presented and discussed.

Keywords

Thin film Third-order ODE Finite differences 0-stability Von Neumann stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Greenspan HP (1978) On the motion of a small viscous droplet that wets a surface. J Fluid Mech 84:125–143 ADSMATHCrossRefGoogle Scholar
  2. 2.
    Myers TG (1998) Thin films with high surface tension. SIAM Rev 40:441–462 MathSciNetMATHCrossRefADSGoogle Scholar
  3. 3.
    Boatto S, Kadanoff LP, Olla P (1993) Traveling-wave solutions to thin film equations. Phys Rev E 48:4423–4431 MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Almgren R (1996) Singularity formation in Hele-Shaw bubbles. Phys Fluids 8:344–352 MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    Constantin P, Dupont TF, Goldstein RE, Kadanoff LP, Shelley MJ, Zhou S-M (1993) Droplet breakup in a model of the Hele-Shaw cell. Phys Rev E 47:4169–4181 MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Dupont TF, Goldstein RE, Kadanoff LP, Zhou S-M (1993) Finite-time singularity formation in Hele-Shaw systems. Phys Rev E 47:4182–4196 MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Goldstein RE, Pesci AI, Shelley MJ (1998) Instabilities and singularities in Hele-Shaw flow. Phys Fluids 10:2701–2723 MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    Pesci AI, Goldstein RE, Shelley MJ (1999) Domain of convergence of perturbative solutions for Hele-Shaw flow near interface collapse. Phys Fluids 11:2809–2811 MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    Greenspan HP, McCay BM (1981) On the wetting of a surface by a very viscous fluid. Stud Appl Math 64:95–112 MathSciNetMATHGoogle Scholar
  10. 10.
    Hocking LM (1981) Sliding and spreading of thin two dimensional drops. Q J Mech Appl Math 34:37–55 MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Lacey AA (1982) The motion with slip of a thin viscous droplet over a solid surface. Stud Appl Math 67:217–230 MathSciNetMATHGoogle Scholar
  12. 12.
    Tanner LH (1979) The spreading of silicone oil drops on horizontal surfaces. J Phys D, Appl Phys 12:1473–1484 ADSCrossRefGoogle Scholar
  13. 13.
    Bernis F (1996) Finite speed of propagation for thin viscous flow when 2<n<3. C R Acad Sci I, Math 322:1169–1174 MathSciNetMATHGoogle Scholar
  14. 14.
    Bernis F, Peletier LA (1996) Two problems from draining flows involving third-order ordinary differential equations. SIAM J Math Anal 27:515–527 MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Troy WC (1993) Solutions of third-order differential equations relevant to draining and coating flows. SIAM J Math Anal 24:155–171 MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Bertozzi AL (1996) Symmetric singularity formation in lubrication-type equations for interface motion. SIAM J Appl Math 56:681–714 MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Bertozzi AL (1998) The mathematics of moving contact lines in thin liquid films. Not Am Math Soc 45:689–697 MathSciNetMATHGoogle Scholar
  18. 18.
    Howes FA (1983) The asymptotic solution of a class of third-order boundary value problems arising in the theory of thin film flows. SIAM J Appl Math 43:993–1004 MathSciNetADSMATHCrossRefGoogle Scholar
  19. 19.
    Tuck EO, Schwartz LW (1990) Numerical and asymptotic study of some third-order ordinary differential equations relevant to draining and coating flows. SIAM Rev 32:453–469 MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Duffy BR, Wilson SK (1997) A third-order differential equation arising in thin-film flows and relevant to Tanner’s Law. Appl Math Lett 10:63–68 MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Ford WF (1992) A third-order differential equation. SIAM Rev 34:121–122 CrossRefGoogle Scholar
  22. 22.
    Buckingham R, Shearer M, Bertozzi A (2003) Thin film traveling waves and the Navier slip condition. SIAM J Appl Math 63:722–744 MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Momoniat E, Selway TA, Jina K (2007) Analysis of Adomian decomposition applied to a third-order ordinary differential equation from thin film flow. Nonlinear Anal, Ser A, Theory Methods Appl 66:2315–2324 MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Momoniat E (2009) Symmetries, first integrals and phase planes of a third order ordinary differential equation from thin film flow. Math Comput Model 49:215–225 MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Lambert JD (1991) Numerical methods for ordinary differential systems. Wiley, Chichester MATHGoogle Scholar
  26. 26.
    Butcher JC (2008) Numerical methods for ordinary differential equations. Wiley, Chichester MATHCrossRefGoogle Scholar
  27. 27.
    Aceto L, Trigiante D (2007) The stability problem for linear multistep methods: old and new results. J Comput Appl Math 210:2–12 MathSciNetADSMATHCrossRefGoogle Scholar
  28. 28.
    Hairer E, Nørsett SP, Wanner G (1993) Solving ordinary differential equations I: nonstiff problems, 2nd edn. Springer, Berlin MATHGoogle Scholar
  29. 29.
    Lax PD, Richtmyer RD (1956) Survey of the stability of linear finite difference equations. Commun Pure Appl Math 9:267–293 MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Bender CM, Orszag SA (1978) Advanced mathematical methods for scientists and engineers. McGraw–Hill, New York MATHGoogle Scholar
  31. 31.
    Geršgorin SA (1931) Über die Abgrenzung der Eigenwerte einer Matrix. Dokl Akad Nauk (A), Otd Fiz-Mat Nauk 749–754 Google Scholar
  32. 32.
    Varga RS (2004) Geršgorin and his circles. Springer, New York MATHCrossRefGoogle Scholar
  33. 33.
    Myers TG, Charpin JPF (2000) The effect of the Coriolis force on axisymmetric rotating thin film flows. Int J Non-linear Mech 36:629–635 CrossRefGoogle Scholar
  34. 34.
    Bornside DE, Macosko CW, Scriven LE (1987) On the modeling of spin coating. J Imag Technol 13:122–130 Google Scholar
  35. 35.
    Forcada ML, Mate CM (1993) The flow of thin viscous liquid films on rotating disks. J Colloid Interface Sci 160:218–225 CrossRefGoogle Scholar
  36. 36.
    Dandapat BS, Ray PC (1994) The effect of thermocapillarity on the flow of a thin liquid film on a rotating disc. J Phys D, Appl Phys 27:2041–2045 ADSCrossRefGoogle Scholar
  37. 37.
    Leshev I, Peev G (2003) Film flow on a horizontal rotating disk. Chem Eng Proc 42:925–929 CrossRefGoogle Scholar
  38. 38.
    Huang K-H, Chou F-C, Yang C-P (2007) Visualization of the effect of liquid dispensing method during spin coating. Jpn J Appl Phys 46:5238–5244 ADSCrossRefGoogle Scholar
  39. 39.
    Afsar-Siddiqui AB, Luckham PF, Matar OK (2003) The spreading of surfactant solutions on thin liquid films. Adv Colloid Interface Sci 106:183–236 CrossRefGoogle Scholar
  40. 40.
    Gaver DP III, Grotberg JB (1990) The dynamics of a localized surfactant on a thin film. J Fluid Mech 213:127–148 ADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Centre for Differential Equations, Continuum Mechanics and Applications School of Computational and Applied MathematicsUniversity of the WitwatersrandWitsSouth Africa

Personalised recommendations