Advertisement

Meccanica

, Volume 45, Issue 6, pp 753–765 | Cite as

A new model for snow avalanche dynamics based on non-Newtonian fluids

  • Eloïse BovetEmail author
  • Bernardino Chiaia
  • Luigi Preziosi
Article

Abstract

The purpose of this paper is to develop a model to describe the snow avalanche dynamics emphasizing the phenomenon of entrainment, the shape variation and the velocity profile thanks to the peculiar features of non-Newtonian fluids, in particular those showing shear thinning and Bingham-like constitutive behaviours. Two different approaches are proposed to simulate the avalanches numerically. The first considers the transformation of the avalanche domain into a simple shape domain that does not change in time. The second is based on the level set method, which is suitable for free boundary problems. Finally, the characteristics of the variation of the interface between avalanche and snowcover under a similarity hypothesis is put forward. The model is validated through the comparison with some experimental data.

Snow avalanches Bingham fluid Shear thinning Level set 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barbolini M, Cappabianca F, Issler D, Gauer P, Eglit M (2003) WP5: model development and validation. Erosion and deposition processes in snow avalanche dynamics: report on the state of the art. SATSIE project Google Scholar
  2. 2.
    Beghin P, Olagne X (1991) Experimental and theoretical study of the dynamics of powder snow avalanches. Cold Reg Sci Technol 19:317–326 CrossRefGoogle Scholar
  3. 3.
    Bovet E, Preziosi L, Chiaia B, Barpi F (2007) The level set method applied to avalanches. In: Proceedings of the European COMSOL conference 2007, Grenoble, France, vol 1, pp 321–325 Google Scholar
  4. 4.
    Bovet E, Preziosi L, Chiaia B (2009) Numerical analysis of snow avalanche mechanics and interaction with structures. XIX national congress of Associazione Italiana di Meccanica Teorica ed Applicata (AIMETA), Ancona (IT) September 2009 Google Scholar
  5. 5.
    COMSOL (2005) Comsol multiphysics: rising bubble modeled with the level set method Google Scholar
  6. 6.
    Coussot P, Ancey C (1999) Rhéophisique des pates et des suspensions. In: EDP sciences, pp 227–240 Google Scholar
  7. 7.
    Dent JD, Lang TE (1980) Modeling of snow flow. J Glaciol 26:131–140 Google Scholar
  8. 8.
    Dent JD, Lang TE (1983) A biviscous modified Bingham model of snow avalanche motion. Ann Glaciol 4:42–46 ADSGoogle Scholar
  9. 9.
    Egli T (1999) Richtlinie Objektschutz gegen Naturgefahren, Gebaudeversicherungsanstalt des Kantons St. Gallen Google Scholar
  10. 10.
    Eglit ME, Demidov KS (2005) Mathematical modeling of snow entrainment in avalanche motion. Cold Reg Sci Technol 43:10–23 CrossRefGoogle Scholar
  11. 11.
    Farina A (1997) Waxy crude oils: some aspects of their dynamics. Math Mod Methods Appl Sci 7(4):435–455 CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Farina A, Preziosi L (1997) Flow of waxy crude oils. In: Progress in industrial mathematics, pp 306–313 Google Scholar
  13. 13.
    Farina A, Fasano A (1997) Flow characteristics of waxy crude oils in laboratory experimental loops. Math Comput Model 25(5):75–86 CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Gauer P, Issler D (2004) Possible erosion mechanism in snow avalanches. Ann Glaciol 38:384–392 CrossRefADSGoogle Scholar
  15. 15.
    Norem H, Irgens F, Schieldrop B (1989) Simulation of snow-avalanche flow in run-out zones. Ann Glaciol 13:218–225 ADSGoogle Scholar
  16. 16.
    Harbitz C (1998) A survey of computational models for snow avalanche motion. Norwegian Geotechnical Institute, Oslo, NGI report 581220-1 Google Scholar
  17. 17.
    Kern M, Tiefenbacher F (2004) Experimental devices to determine snow avalanche basal friction and velocity profiles. Cold Reg Sci Technol 38:17–30 CrossRefGoogle Scholar
  18. 18.
    Kern M, Tiefenbacher F, McElwaine JN (2004) The rheology of snow in large chute flows. Cold Reg Sci Technol 39:181–192 CrossRefGoogle Scholar
  19. 19.
    Leppert C, Dinkler D (2006) A two-phase model for granular flows applied to avalanches. In: III European conference on computational mechanics solids, structures and coupled problems in engineering Google Scholar
  20. 20.
    Macosko CHW (1994) Rheology: principles, measurements and applications. Wiley, New York Google Scholar
  21. 21.
    Naaim M, Ancey C (1992) Dense avalanche model. European Summer University, Chamonix, Cemagref Publications, pp 173–181 Google Scholar
  22. 22.
    Naaim M, Bouchet A (2003) Etude expérimentale des écoulements d’avalanches de neige dense. Mesures et interprétations des profils de vitesse en écoulements quasi permanents et pleinement développés. Rapport scientifique. UR ETNA, Grenoble Google Scholar
  23. 23.
    Naaim M, Faug T, Naaim-Bouvet F (2003) Dry granular flow modelling including erosion and deposition. Surv Geophys 24:569–585 CrossRefADSGoogle Scholar
  24. 24.
    Nadeem S, Asghar S, Hayat T, Hussain M (2008) The Rayleigh Stokes problem for rectangular pipe in Maxwell and second grade fluid. Meccanica 43:495–504 CrossRefMathSciNetzbMATHGoogle Scholar
  25. 25.
    Nettuno L (1996). La modellazione delle valanghe di neve densa: aspetti modellistici e sperimentali (On modeling of flowing avalanches: modelisation and experimentation). PhD thesis, University of Pavia Google Scholar
  26. 26.
    Nishimura K, Maeno N (1989) Contribution of viscous forces to avalanche dynamics. Ann Glaciol 13:202–206 ADSGoogle Scholar
  27. 27.
    Perla RI Cheng TT, McClung DM (1980) A two-parameter model of snow-avalanche motion. J Glaciol 26(94):197–207 Google Scholar
  28. 28.
    Rastello MC (2002) Etude de la dynamique des avalanches de neige en aérosol. PhD thesis, Centre d’Etude du Machinisme Agricole du Génie Rural et Forestier (CEMAGREF), Saint Martin d’Héres France Google Scholar
  29. 29.
    Romano A, Lancellotta R, Marasco A (2006) Continuum mechanics using Mathematica. Fundamentals, applications, and scientific computing. Birkhäuser, Basel zbMATHGoogle Scholar
  30. 30.
    Salm B (1966) Contribution to avalanche dynamics. In: International association of scientific, hydrology publication 69 (Symposium at Davos 1965—Scientific aspects of snow and ice avalanches), pp 199–214 Google Scholar
  31. 31.
    Sartoris G, Bartelt P (2000) Upwinded finite difference schemes for dense snow avalanche modeling. Int J Numer Methods Fluids 32(7):799–821 CrossRefzbMATHGoogle Scholar
  32. 32.
    Savage S, Hutter K (1991) The dynamics of granular materials from initiation to runout, part I: analysis. Acta Mech 86:201–231 CrossRefMathSciNetzbMATHGoogle Scholar
  33. 33.
    Sovilla B, Bartelt P (2001) Observation and modelling of snow avalanche entrainment. Nat Hazards Earth Syst Sci 2:169–179 CrossRefADSGoogle Scholar
  34. 34.
    Sovilla B (2004) Field experiments and numerical modelling of mass entrainment. PhD thesis. Swiss Federal Institute of Technology, Zurich, ETH n.15462 Google Scholar
  35. 35.
    Sovilla B, Burlando P, Bartelt P (2006) Field experiments and numerical modeling of mass entrainment in snow avalanches. J Geophys Res 111:1–16 CrossRefGoogle Scholar
  36. 36.
    Sovilla B, Margreth S, Bartelt P (2007) On snow entrainment in avalanche dynamics calculations. 47:69-79 Google Scholar
  37. 37.
    Voellmy A (1955) Über die Zerstrungskraft von Lawinen. Scweiz Bauztg 73 (12/15/17/19), 159–162, 212–217, 246–249, 280–285 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Eloïse Bovet
    • 1
    Email author
  • Bernardino Chiaia
    • 1
  • Luigi Preziosi
    • 2
  1. 1.Department of Structural and Geotechnical EngineeringPolitecnico di TorinoTorinoItaly
  2. 2.Department of MathematicsPolitecnico di TorinoTorinoItaly

Personalised recommendations