Advertisement

Meccanica

, Volume 45, Issue 3, pp 367–373 | Cite as

Thermal boundary layer flow over a stretching sheet in a micropolar fluid with radiation effect

  • Anuar Ishak
Article

Abstract

In the present paper, we study the effects of radiation on the thermal boundary layer flow induced by a linearly stretching sheet immersed in an incompressible micropolar fluid with constant surface temperature. Similarity transformation is employed to transform the governing partial differential equations into ordinary ones, which are then solved numerically using the Runge-Kutta-Fehlberg method. Results for the local Nusselt number as well as the temperature profiles are presented for different values of the governing parameters. It is found that the heat transfer rate at the surface decreases in the presence of radiation. Comparison with known results for certain particular cases is excellent.

Keywords

Boundary layer Heat transfer Micropolar fluid Radiation Stretching sheet Fluids mechanics 

Nomenclature

a,b

constants

cp

specific heat at constant pressure

f

dimensionless stream function

h

dimensionless microrotation

j

microinertia density

k

thermal conductivity

k*

mean absorption coefficient

K

material parameter

m

boundary parameter

N

microrotation or angular velocity

NR

radiation parameter

Pr

Prandtl number

qr

radiative heat flux

T

fluid temperature

Tw

surface temperature

T

ambient temperature

u,v

velocity components in the x- and y-directions, respectively

Uw

velocity of the stretching sheet

x,y

Cartesian coordinates along the sheet and normal to it, respectively

Greek Letters

α

thermal diffusivity

β

thermal expansion coefficient

γ

spin gradient viscosity

η

similarity variable

θ

dimensionless temperature

κ

vortex viscosity

ν

kinematic viscosity

μ

dynamic viscosity

ρ

fluid density

σ*

Stefan-Boltzmann constant

ψ

stream function

Subscripts

w

condition at the solid surface

ambient condition

Superscript

differentiation with respect to η

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Crane LJ (1970) Flow past a stretching plate. Z Angew Math Phys 21:645–647 CrossRefGoogle Scholar
  2. 2.
    Gupta PS, Gupta AS (1977) Heat and mass transfer on a stretching sheet with suction or blowing. Can J Chem Eng 55:744–746 CrossRefGoogle Scholar
  3. 3.
    Grubka LJ, Bobba KM (1985) Heat transfer characteristics of a continuous, stretching surface with variable temperature. ASME J Heat Transf 107:248–250 CrossRefGoogle Scholar
  4. 4.
    Chen CK, Char MI (1988) Heat transfer of a continuous stretching surface with suction or blowing. J Math Anal Appl 135:568–580 MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Dutta BK, Roy P, Gupta AS (1985) Temperature field in the flow over a stretching sheet with uniform heat flux. Int Commun Heat Mass Transfer 12:89–94 CrossRefGoogle Scholar
  6. 6.
    Ali ME (1994) Heat transfer characteristics of a continuous stretching surface. Heat Mass Transfer 29:227–234 Google Scholar
  7. 7.
    Ali ME (1995) On thermal boundary layer on a power-law stretched surface with suction or injection. Int J Heat Fluid Flow 16:280–290 CrossRefGoogle Scholar
  8. 8.
    Afzal N, Varshney IS (1980) The cooling of a low heat resistance stretching sheet moving through a fluid. Heat Mass Transfer 14:289–293 Google Scholar
  9. 9.
    Afzal N (1993) Heat transfer from a stretching surface. Int J Heat Mass Transfer 36:1128–1131 MATHCrossRefGoogle Scholar
  10. 10.
    Chen CH (1998) Laminar mixed convection adjacent to vertical, continuously stretching sheets. Heat Mass Transfer 33:471–476 CrossRefADSGoogle Scholar
  11. 11.
    Ali M, Al-Yousef F (1998) Laminar mixed convection from a continuously moving vertical surface with suction or injection. Heat Mass Transfer 33:301–306 CrossRefADSGoogle Scholar
  12. 12.
    Daskalakis JE (1993) Free convection effects in the boundary layer along a vertically stretching flat surface. Can J Phys 70:1253–1260 ADSGoogle Scholar
  13. 13.
    Partha MK, Murthy PVSN, Rajasekhar GP (2005) Effect of viscous dissipation on the mixed convection heat transfer from an exponentially stretching surface. Heat Mass Transfer 41:360–366 CrossRefADSGoogle Scholar
  14. 14.
    El-Aziz MA (2007) Temperature dependent viscosity and thermal conductivity effects on combined heat and mass transfer in MHD three-dimensional flow over a stretching surface with Ohmic heating. Meccanica 42:375–386 MATHCrossRefGoogle Scholar
  15. 15.
    Mahapatra TR, Dholey S, Gupta AS (2007) Momentum and heat transfer in the magnetohydrodynamic stagnation-point flow of a viscoelastic fluid toward a stretching surface. Meccanica 42:263–272 MATHCrossRefGoogle Scholar
  16. 16.
    Ishak A, Nazar R, Pop I (2006) Unsteady mixed convection boundary layer flow due to a stretching vertical surface. Arab J Sci Eng 31:165–182 MathSciNetGoogle Scholar
  17. 17.
    Ishak A, Nazar R, Pop I (2006) Magnetohydrodynamic stagnation point flow towards a stretching vertical sheet. Magnetohydrodynamics 42:17–30 Google Scholar
  18. 18.
    Ishak A, Nazar R, Pop I (2006) Mixed convection boundary layers in the stagnation-point flow towards a stretching vertical sheet. Meccanica 41:509–518 MATHCrossRefGoogle Scholar
  19. 19.
    Ishak A, Nazar R, Pop I (2007) Mixed convection on the stagnation point flow toward a vertical continuously stretching sheet. ASME J Heat Transfer 129:1087–1090 CrossRefGoogle Scholar
  20. 20.
    Ishak A, Nazar R, Pop I (2008) Hydromagnetic flow and heat transfer adjacent to a stretching vertical sheet. Heat Mass Transfer 44:921–927 CrossRefADSGoogle Scholar
  21. 21.
    Chiam TC (1982) Micropolar fluid flow over a stretching sheet. Z Angew Math Mech 62:565–568 CrossRefGoogle Scholar
  22. 22.
    Heruska MW, Watson LT, Sankara KK (1986) Micropolar flow past a porous stretching sheet. Comput Fluids 14:117–129 MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Agarwal RS, Bhargava R, Balaji AVS (1989) Finite element solution of flow and heat transfer of a micropolar fluid over a stretching sheet. Int J Eng Sci 27:1421–1428 MATHCrossRefGoogle Scholar
  24. 24.
    Hassanien IA, Gorla RSR (1990) Heat transfer to a micropolar fluid from a non-isothermal stretching sheet with suction and blowing. Acta Mech 84:191–199 CrossRefGoogle Scholar
  25. 25.
    Nelson NA, Desseaux A (2001) Effect of surface conditions on flow of a micropolar fluid driven by a porous stretching sheet. Int J Eng Sci 39:1881–1897 Google Scholar
  26. 26.
    Kelson NA, Farrell TW (2001) Micropolar flow over a porous stretching sheet with strong suction or injection. Int Commun Heat Mass Transfer 28:479–488 CrossRefGoogle Scholar
  27. 27.
    Nazar R, Amin N, Pop I (2004) Stagnation point flow of a micropolar fluid towards a stretching sheet. Int J Non-Linear Mech 39:1227–1235 MATHCrossRefGoogle Scholar
  28. 28.
    Hayat T, Abbas Z, Javed T (2008) Mixed convection flow of a micropolar fluid over a non-linearly stretching sheet. Phys Lett A 372:637–647 CrossRefADSGoogle Scholar
  29. 29.
    Ishak A, Nazar R, Pop I (2008) Mixed convection stagnation point flow of a micropolar fluid towards a stretching sheet. Meccanica 43:411–418 MATHCrossRefGoogle Scholar
  30. 30.
    Ishak A, Nazar R, Pop I (2008) Heat transfer over a stretching surface with variable surface heat flux in micropolar fluids. Phys Lett A 372:559–561 CrossRefADSGoogle Scholar
  31. 31.
    Bataller RC (2008) Radiation effects in the Blasius flow. Appl Math Comput 198:333–338 MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Ahmadi G (1976) Self-similar solution of incompressible micropolar boundary layer flow over a semi-infinite plate. Int J Eng Sci 14:639–646 MATHCrossRefGoogle Scholar
  33. 33.
    Yücel A (1989) Mixed convection in micropolar fluid flow over a horizontal plate with surface mass transfer. Int J Eng Sci 27:1593–1602 MATHCrossRefGoogle Scholar
  34. 34.
    Brewster MQ (1992) Thermal radiative transfer properties. Wiley, New York Google Scholar
  35. 35.
    Datti PS, Prasad KV, Abel MS, Joshi A (2004) MHD visco-elastic fluid flow over a non-isothermal stretching sheet. Int J Eng Sci 42:935–946 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.School of Mathematical Sciences, Faculty of Science and TechnologyUniversiti Kebangsaan MalaysiaUKM Bangi, SelangorMalaysia

Personalised recommendations