, Volume 44, Issue 1, pp 1–11 | Cite as

Combustion process in a spark ignition engine: analysis of cyclic peak pressure and peak pressure angle oscillations

  • Grzegorz LitakEmail author
  • Tomasz Kamiński
  • Jacek Czarnigowski
  • Asok K. Sen
  • Mirosław Wendeker


In this paper we analyze the cycle-to-cycle variations of peak pressure p max and peak pressure angle α pmax in a four-cylinder spark ignition engine. We examine the experimental time series of p max and α pmax for three different spark advance angles. Using standard statistical techniques such as return maps and histograms we show that depending on the spark advance angle, there are significant differences in the fluctuations of p max and α pmax . We also calculate the multiscale entropy of the various time series to estimate the effect of randomness in these fluctuations. Finally, we explain how the information on both p max and α pmax can be used to develop optimal strategies for controlling the combustion process and improving engine performance.


Stochastic process Nonlinear time series analysis Mechanics of machines Combustion process Indicated pressure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Clerk D (1886) The gas engine. Longmans Green, London Google Scholar
  2. 2.
    Patterson DJ (1966) Cylinder pressure variations, a fundamental combustion problem. SAE paper No. 660129 Google Scholar
  3. 3.
    Hubbard M, Dobson PD, Powell JD (1976) Closed loop control of spark advance using a cylinder pressure sensor. J Dyn Syst Meas Control 414–420 Google Scholar
  4. 4.
    Matekunas FA (1986) Engine combustion control with ignition timing by pressure ratio management. US Pat A 4622939 Nov 18 Google Scholar
  5. 5.
    Sawamoto K, Kawamura Y, Kita T, Matsushita K (1987) Individual cylinder knock control by detecting cylinder pressure. SAE paper No 871911 Google Scholar
  6. 6.
    Wagner RM, Daw CS, Thomas JF (1993) Controlling chaos in spark-ignition engines. In: Proceedings of the central and eastern states joint technical meeting of the combustion institute, New Orleans, March 15–17 Google Scholar
  7. 7.
    Eriksson L, Nilsen L, Glavenius M (1997) Development of control algorithm stabilizing torque for optimal position of pressure peak. SAE Trans J Engines 106:1216–1223 Google Scholar
  8. 8.
    Müller R, Hemberger H-H, Baier KH (2001) Engine control using neural networks: a new method in engine management systems. Meccanica 32:423–430 CrossRefGoogle Scholar
  9. 9.
    Matsumoto K, Tsuda I, Hosoi Y (2007) Controlling engine system: a low-dimensional dynamics in a spark ignition engine of a motorcycle. Z Naturforsch 62a:587–595 Google Scholar
  10. 10.
    Heywood JB (1988) Internal combustion engine fundamentals. McGraw-Hill, New York Google Scholar
  11. 11.
    Hu Z (1996) Nonlinear instabilities of combustion processes and cycle-to-cycle variations in spark-ignition engines. SAE paper No 961197 Google Scholar
  12. 12.
    Wagner RM, Drallmeier JA, Daw CS (2001) Characterization of lean combustion instability in pre-mixed charge spark ignition engines. Int J Engine Res 1:301–320 CrossRefGoogle Scholar
  13. 13.
    Daw CS, Finney CEA, Tracy ER (2003) A review of symbolic analysis of experimental time series. Rev Scen Instrum 74:915–930 CrossRefADSGoogle Scholar
  14. 14.
    Wendeker M, Czarnigowski J, Litak G, Szabelski K (2003) Chaotic combustion in spark ignition engines. Chaos Solitons Fractals 18:803–806 zbMATHCrossRefGoogle Scholar
  15. 15.
    Kamiński T, Wendeker M, Urbanowicz K, Litak G (2004) Combustion process in a spark ignition engine: dynamics and noise level estimation. Chaos 14:461–466 CrossRefADSGoogle Scholar
  16. 16.
    Winsor RE, Patterson DJ (1973) Mixture turbulence—a key to cyclic combustion variation. SAE paper No 730086 Google Scholar
  17. 17.
    Daily JW (1988) Cycle-to-cycle variations: a chaotic process? Combust Sci Technol 57:149–162 CrossRefGoogle Scholar
  18. 18.
    Kantor JC (1984) A dynamical instability of spark-ignited engines. Science 224:1233–1235 CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Foakes AP, Pollard DG (1993) Investigation of a chaotic mechanism for cycle-to-cycle variations. Combust Sci Technol 90:281–287 CrossRefGoogle Scholar
  20. 20.
    Chew L, Hoekstra R, Nayfeh JF, Navedo J (1994) Chaos analysis of in-cylinder pressure measurements. SAE paper No 942486 Google Scholar
  21. 21.
    Letellier C, Meunier-Guttin-Cluzel S, Gouesbet G, Neveu F, Duverger T, Cousyn B (1997) Use of the nonlinear dynamical system theory to study cycle-to-cycle variations from spark-ignition engine pressure data. SAE paper No 971640 Google Scholar
  22. 22.
    Daw CS, Finney CEA, Green JB Jr, Kennel MB, Thomas JF, Connolly FT (1996) A simple model for cyclic variations in a spark-ignition engine. SAE paper No 962086 Google Scholar
  23. 23.
    Daw CS, Kennel MB, Finney CEA, Connolly FT (1998) Observing and modelling dynamics in an internal combustion engine. Phys Rev E 57:2811–2819 Google Scholar
  24. 24.
    Green JB Jr, Daw CS, Armfield JS, Finney CEA, Wagner RM, Drallmeier JA, Kennel MB, Durbetaki P (1999) Time irreversibility and comparison of cyclic-variability models. SAE paper No 1999-01-0221 Google Scholar
  25. 25.
    Wendeker M, Litak G, Czarnigowski J, Szabelski K (2004) Nonperiodic oscillations in a spark ignition engine. Int J Bifur Chaos 14:1801–1806 zbMATHCrossRefGoogle Scholar
  26. 26.
    Sen AK, Litak G, Taccani R, Radu R (2008) Wavelet analysis of cycle-to-cycle pressure variations in an internal combustion engine. Chaos Solitons Fractals 38:886–893 CrossRefGoogle Scholar
  27. 27.
    Litak G, Kamiński T, Rusinek R, Czarnigowski J, Wendeker M (2008) Patterns in the combustion process in a spark ignition engine. Chaos Solitons Fractals 35:578–585 CrossRefGoogle Scholar
  28. 28.
    Litak G, Kamiński T, Czarnigowski J, Żukowski D, Wendeker M (2007) Cycle-to-cycle oscillations of heat release in a spark ignition engine. Meccanica 42:423–433 CrossRefGoogle Scholar
  29. 29.
    Sen AK, Longwic R, Litak G, Górski K (2008) Analysis of cycle-to-cycle pressure oscillations in a diesel engine. Mech Syst Signal Process 22:362–373 CrossRefADSGoogle Scholar
  30. 30.
    Nielsen L, Eriksson L (1998) An ion-sense engine-fine-tuner. IEEE Control Syst Mag 18:43–52 CrossRefGoogle Scholar
  31. 31.
    Kaminski T (2005) PhD thesis, Technical University of Lublin, Lublin Google Scholar
  32. 32.
    Matekunas FA (1983) Modes and measures of cyclic combustion variability. SAE paper No 830337 Google Scholar
  33. 33.
    Ozdor N, Dulger M, Sher E (1994) Cyclic variability in spark ignition engines: a literature survey. SAE paper No 940987 Google Scholar
  34. 34.
    Radu R, Taccani R (2003) Experimental setup for the cyclic variability analysis on a spark ignition engine. SAE NA paper No 2003-01-19 Google Scholar
  35. 35.
    Litak G, Taccani R, Radu R, Urbanowicz K, Wendeker M, Hołyst JA, Giadrossi A (2005) Estimation of the noise level using coarse-grained entropy of experimental time series of internal pressure in a combustion engine. Chaos Solitons Fractals 23:1695–1701 zbMATHGoogle Scholar
  36. 36.
    Li G-X, Yao B-F (2008) Nonlinear dynamics of cycle-to-cycle combustion variations in a lean-burn natural gas engine. Appl Therm Eng 28:611–620 CrossRefGoogle Scholar
  37. 37.
    Litak G, Wendeker M, Krupa M, Czarnigowski J (2005) A numerical study of a simple stochastic/ deterministic model of cycle-to-cycle combustion fluctuations in spark ignition engines. J Vib Control 11:371–379 CrossRefGoogle Scholar
  38. 38.
    Radons G, Neugebauer R (2004) Nonlinear dynamic effects of production systems. Wiley-VCH, Weinheim CrossRefGoogle Scholar
  39. 39.
    Litak G, Rusinek R, Teter A (2004) Nonlinear analysis of experimental time series of a straight turning process. Meccanica 39:105–112 zbMATHCrossRefGoogle Scholar
  40. 40.
    Piernikarski D, Hunicz J (2000) Investigation of misfire nature using optical combustion sensor in a SI automotive engine. SAE paper No 2000-02-0549 Google Scholar
  41. 41.
    Eriksson L (1999) Spark advance for optimal efficiency. SAE paper No 99-01-0548 Google Scholar
  42. 42.
    Grassberger P (1991) In: Atmanspacher H, Scheingraber H (eds) Information dynamics. Plenum, New York Google Scholar
  43. 43.
    Costa M, Goldberger AL, Peng C-K (2002) Multiscale analysis of complex biological signals. Phys Rev Lett 89:068102 CrossRefADSGoogle Scholar
  44. 44.
    Costa M, Peng C-K, Goldberger AL (2003) Multiscale analysis of human gait dynamics. Physica A 330:53–60 zbMATHCrossRefADSGoogle Scholar
  45. 45.
    Costa M, Goldberger AL, Peng C-K (2005) Multiscale analysis of biological signals. Phys Rev E 89:021906 CrossRefMathSciNetGoogle Scholar
  46. 46.
    Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol 278:H2039–H2049 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Grzegorz Litak
    • 1
    • 2
    Email author
  • Tomasz Kamiński
    • 3
  • Jacek Czarnigowski
    • 4
  • Asok K. Sen
    • 5
  • Mirosław Wendeker
    • 6
  1. 1.Department of Applied MechanicsTechnical University of LublinLublinPoland
  2. 2.Dipartimento di ArchitetturaCostruzioni e Strutture, Universita Politecnica delle MarcheAnconaItaly
  3. 3.Motor Transport InstituteWarsawPoland
  4. 4.Department of Machine ConstructionTechnical University of LublinLublinPoland
  5. 5.Department of Mathematical SciencesIndiana UniversityIndianapolisUSA
  6. 6.Department of Thermodynamics, Fluid Mechanics and Aircraft PropulsionTechnical University of LublinLublinPoland

Personalised recommendations