Advertisement

Meccanica

, Volume 42, Issue 3, pp 293–306 | Cite as

Identification of viscoelastic properties by means of nanoindentation taking the real tip geometry into account

  • Andreas JägerEmail author
  • Roman Lackner
  • Josef Eberhardsteiner
OriginalPaper

Abstract

Motivated by recent progress in viscoelastic indentation analysis, the identification of viscoelastic properties from nanoindentation test data taking the real tip geometry into account is presented in this paper. Based on the elastic solution of the indentation problem, the corresponding viscoelastic solution is obtained by the application of the method of functional equations. This general solution, which accounts for the real geometric properties of the indenter tip, is specialized for the case of a trapezoidal load history, commonly employed in nanoindentation testing. Three deviatoric creep models, the single dash-pot, the Maxwell, and the three-parameter model are considered. The so-obtained expressions allow us to determine viscoelastic model parameters via back calculation from the measured load–penetration history. The presented approach is illustrated by the identification of short-term viscoelastic properties of bitumen. Hereby, the influence of loading rate, maximum load, and temperature on the model parameters is investigated.

Keywords

Nanoindentation Creep Bitumen Viscoelasticity Mechanics of materials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sneddon IN (1965) The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int J Eng Sci 3:47–57zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583ADSGoogle Scholar
  3. 3.
    Cheng L, Xia X, Scriven LE, Gerberich WW (2005) Spherical-tip indentation of viscoelastic material. Mech Mater 37:213–226CrossRefGoogle Scholar
  4. 4.
    Vandamme M, Ulm F-J (2006) Viscoelastic solutions for conical indentation. Int J Solids Struct 43(10):3142–3165CrossRefGoogle Scholar
  5. 5.
    Lee EH, Radok JRM (1960) The contact problem for viscoelastic bodies. J Appl Mech 82:438–444MathSciNetGoogle Scholar
  6. 6.
    Abramowitz M, Stegun IA (1972) Handbook of mathematical functions, with formulas, graphs, and mathematical tables. Dover, New YorkzbMATHGoogle Scholar
  7. 7.
    Lee EH (1955) Stress analysis in visco-elastic bodies. Quarter Appl Math 13:183–190Google Scholar
  8. 8.
    Findley WN, Lai JS, Onaran K (1989) Creep and relaxation of nonlinear viscoelastic materials. Dover Publications, New YorkGoogle Scholar
  9. 9.
    Partal P (1999) Rheological characterisation of synthetic binders and unmodified bitumens. Fuel 78:1–10CrossRefGoogle Scholar
  10. 10.
    ÖNORM EN 1426 (2000) Bitumen und bitumenhaltige Bindemittel – Bestimmmung der Nadelpenetration [Bitumen and bituminous binders – Determination of needle penetration]. Österreichisches Normungsinstitut, Vienna In GermanGoogle Scholar
  11. 11.
    ÖNORM EN 12593 (2000) Bitumen und bitumenhaltige Bindemittel – Bestimmmung des Brechpunktes nach Fraaß [Bitumen and bituminous binders – Determination of the Fraass breaking point]. Österreichisches Normungsinstitut, Vienna. In GermanGoogle Scholar
  12. 12.
    ÖNORM EN 1427 (2000) Bitumen und bitumenhaltige Bindemittel – Bestimmmung des – Ring- und Kugel-Verfahren [Bitumen and bituminous binders – Determination of softening point - Ring and Ball method]. Österreichisches Normungsinstitut, Vienna. In GermanGoogle Scholar
  13. 13.
    Ulm F-J, Delafargue A, Constantinides G (2005) Experimental microporomechanics. In Ulm F-J, Dormieux L (eds) Applied micromechanics of porous materials (CISM Courses and Lectures No. 480). Vienna, SpringerGoogle Scholar
  14. 14.
    Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1996) Numerical recipes in Fortran 77: the art of scientific computing, vol 1 of Fortran numerical recipes. Cambridge University Press, CambridgeGoogle Scholar
  15. 15.
    Jäger A (2004) Microstructural identification of bitumen by means of atomic force microscopy (AFM), modulated differential scanning calorimetry (MDSC), and reflected light microscopy (RLM). Master’s thesis, Vienna University of Technology, ViennaGoogle Scholar
  16. 16.
    Stangl K, Jäger A, Lackner R (2006) Microstructure-based identification of bitumen performance. Int J Road Mater Pavement 7:111–142Google Scholar
  17. 17.
    Lackner R, Spiegl M, Blab R, Eberhardsteiner J (2005) Is low-temperature creep of asphalt mastic independent of filler shape and mineralogy? Arguments from multiscale analysis. J Mater Civil Eng (ASCE) 17(5):485–491CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Andreas Jäger
    • 1
    Email author
  • Roman Lackner
    • 2
  • Josef Eberhardsteiner
    • 1
  1. 1.Institute for Mechanics of Materials and StructuresVienna University of TechnologyViennaAustria
  2. 2.Computational MechanicsTechnical University of MunichMunichGermany

Personalised recommendations