, Volume 42, Issue 1, pp 47–59 | Cite as

Lifetime simulation of thermo-mechanically loaded components

  • Martin Riedler
  • Heinz Leitner
  • Bernd Prillhofer
  • Gerhard Winter
  • Wilfried Eichlseder
Original Paper


The estimation of the lifetime of thermo-mechanically loaded components by testing is very costly and time-consuming, since the high temperature cycle time in practical application dominates the test duration. Common frequencies for TMF (thermo-mechanical fatigue) tests are at about 0.01 Hz compared to 10–100 Hz at HCF (high cycle fatigue) and about 0.1–1 Hz at isothermal LCF (low cycle fatigue) tests. Therefore, the simulation of fatigue life is an important design step in the fast moving and competitive automotive industry, where the steady rise of engine power and the demand for lightweight construction concurrent with enhanced reliability require an optimised dimensioning process. Methods and models are usually derived from results made on tests with specimens, since it is possible to systematically and exactly define loading parameters and measurement categories. After an extensive test programme (tensile tests, creep tests, low cycle fatigue tests and thermo-mechanical fatigue tests with different influences on specimens) it was possible to develop material models for the simulation of the time- and temperature dependent stress–strain hystereses and damage models for the simulation of the TMF lifetime. Based on this knowledge the whole simulation chain to determine the TMF life of a component is introduced: thermal calculation, mechanical calculation and lifetime calculation. Furthermore the transferability of specimen based simulation models to real components (an alternative test piece and a cylinder head) is investigated.


Fatigue analysis Simulation Material model Lifetime model Thermo-mechanical fatigue 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ayadi Z, Martin B, Leclercq S, Nivoit M, Cunat Ch: (2004) Modelling of cyclic mechanical behaviour of 316SPH steel by a non-linear relaxations approach. Meccanica 39(1):81–85CrossRefMATHGoogle Scholar
  2. 2.
    Bakis CE, Castelli MG, Ellis JR: (1993) Thermo-mechanical testing in torsion: test control and deformation behavior. In: McDowell DL, Ellis JR (eds) Multiaxial fatigue behavior, STP1191. American society for testing and materials, PhiladelphiaGoogle Scholar
  3. 3.
    Basquin OH: The exponential law of endurance tests. In: Proceedings of the ASTM 10, pp 625–630Google Scholar
  4. 4.
    Charkaluk E, Constantinescu A: (2000) An energetic approach in thermo-mechanical fatigue for silicon molybdenum cast iron. Materials high temp 17(3):373–380CrossRefGoogle Scholar
  5. 5.
    Chieragatti R, Paun F: (2000) A new technique for high frequency multiaxial thermo-mechanical fatigue testing of materials. In: Sehitoglu H, Maier HJ (eds) Thermo-mechanical fatigue behaviour of materials: third volume, STP 1371, American society for testing and materials, West Conshohocken, pp 319–332Google Scholar
  6. 6.
    Coffin LF: (1953) A study of the effects of cyclic thermal stresses on a ductile metal. Trans. ASME A 76:931–950Google Scholar
  7. 7.
    FEMFAT (2005) Finite Elemente Methode und Betriebsfestigkeit—Theorie Grundmodul, Manual zur Software FEMFAT, ECS Steyr, St. ValentinGoogle Scholar
  8. 8.
    Golos KM: (1995) Thermo-mechanical fatigue life prediction in terms of energy. In: Bressers J, Rémy L, Steen M, Vallés JL (eds) Fatigue under thermal and mechanical loading: mechanisms, mechanics and modelling. Kluwer Academic Publishers, Petten, pp 467–473Google Scholar
  9. 9.
    Ieşan D, Nappa L: (2004) Thermal stresses in plane strain of porous elastic solids. Meccanica 39(2):125–138CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    Langmayr F, Zieher F: (2004) Thermomechanik in Zylinderköpfen. In: Ventiltrieb und Zylinderkopf, VDI-Berichte 1813, VDI Verlag GmbH, Düsseldorf, pp 227–243Google Scholar
  11. 11.
    Lemaitre J, Chaboche JL: (1990) Mechanics of solid materials. Cambridge University Press, CambridgeMATHGoogle Scholar
  12. 12.
    Loehe D, Beck T, Lang K-H: (2004) Important aspects of cyclic deformation, damage and lifetime behaviour in thermo-mechanical fatigue of engineering alloys. In: Portella PD, Sehitoglu H, Hatanaka K (eds) Fifth international conference on low cycle fatigue, LCF5. DVM, Berlin, pp 161–175Google Scholar
  13. 13.
    Manson SS: (1954) Behaviour of materials under conditions of thermal stress. NACA Report 1170Google Scholar
  14. 14.
    McCarthy P: (2000) The practicalities of thermo-mechanical fatigue testing in the new millennium, proceedings of the HTMTC seminar, DarmstadtGoogle Scholar
  15. 15.
    Miller MP, McDowell DL, Oehmke RLT, Antolovich SD: (1993) A life prediction model for thermo- mechanical fatigue based on microcrack propagation. In: Sehitoglu H (ed) Thermo-mechanical fatigue behaviour of materials, STP 1186. American society for testing and materials, Philadelphia, pp 35–49Google Scholar
  16. 16.
    Minichmayr R, Riedler M, Eichlseder W: (2005) Thermomechanische Ermüdung von Aluminiumlegierungen—Versuchstechnik und Methoden der Lebensdaueranalyse. Materialpruefung 47(10):591–600Google Scholar
  17. 17.
    Minichmayr R, Riedler M, Eichlseder W: (2005) Evaluation of creep behaviour and fatigue life under TMF-loading for alloy AlCuBiPb. In: Carpinteri A (ed) 11th International conference on fracture, ICF11. TurinGoogle Scholar
  18. 18.
    Minichmayr R, Riedler M, Winter G, Leitner H, Eichlseder W: Thermo-mechanical fatigue life assessment of aluminium components using the damage rate model of Sehitoglu, Int. J. of Fatigue (accepted)Google Scholar
  19. 19.
    Minichmayr R: (2005) Modellierung und simulation des thermomechanischen ermüdungsverhaltens von aluminiumbauteilen. PhD Thesis, University of LeobenGoogle Scholar
  20. 20.
    Molina R, Leghissa M, Mastrogiacomo L: (2004) High performance cylinder heads—case studies: application of LHIP and split cylinder head concept. In: Ventiltrieb und Zylinderkopf, VDI-Berichte 1813, VDI Verlag GmbH, Düsseldorf, pp 217–226Google Scholar
  21. 21.
    Neu RW, Sehitoglu H: (1989) Thermo-mechanical fatigue, oxidation and creep, part II: life prediction. Met trans A, 20:1769–1783Google Scholar
  22. 22.
    Ostergren WJ: (1976) A damage function and associated failure equations for predicting hold time and frequency effects in elevated temperature low cycle fatigue. J Test Eval 4:327–339CrossRefGoogle Scholar
  23. 23.
    Ramberg W, Osgood WR: (1943) Description of stress–strain curves by three parameters. NACA Technical Note 902Google Scholar
  24. 24.
    Riedler M, Eichlseder W: (2004) Effects of dwell times on thermo-mechanical fatigue. Mat test 46(11–12): 577–581Google Scholar
  25. 25.
    Riedler M, Eichlseder W, Minichmayr R: (2004) Relationship between LCF and TMF: Similiarities and varities. In: Pappalettere C (ed) 12th International conference on experimental mechanics, ICEM12, McGraw-Hill, Bari, Paper no. 102Google Scholar
  26. 26.
    Riedler M, Eichlseder W: (2004) Temperature control method in elevated and fluctuating temperature fatigue tests. Mat. eng. 11(3):1–7Google Scholar
  27. 27.
    Riedler M, Minichmayr R, Eichlseder W: (2005) Methods for the thermo-mechanical fatigue simulation based on energy criterions. In: 6th international conference of assessment of reliability of materials and structures: problems and solutions, RELMAS2005, St. Petersburg, pp 496–503Google Scholar
  28. 28.
    Riedler M: (2005) TMF von Aluminiumlegierungen—Methodikfindung zur Simulation von thermomechanisch beanspruchten Motorbauteilen aus AluminiumlegierUngen, Fortschritt-Berichte VDI, 718Google Scholar
  29. 29.
    Riedler M, Winter G, Minichmayr R, Eichlseder W: (2005) The use of classical damage parameters for a thermo-mechanical lifetime assessment. In: Nicoletto G (ed) 22nd Danubia-Adria symposium on experimental methods in solid mechanics, DAS22, Parma, pp 194–195Google Scholar
  30. 30.
    Riedler M, Winter G, Minichmayr R, Eichlseder W: (2005) Applicability of plastic and total hysteresis energy criterions for simulating the TMF lifetime. In: Haehner P (ed) High temperature thermo-mechanical fatigue: testing methodology, interpretation of data and applications, Growth Project TMF Standard, BerlinGoogle Scholar
  31. 31.
    Riedler M, Minichmayr R, Eichlseder W: (2005) The influences of pre-aging, temperature, mean and local strain on low cycle fatigue and thermo-mechanical fatigue. In: Carpinteri A (ed) 11th International conference on fracture, ICF11, TurinGoogle Scholar
  32. 32.
    Saltsman JF, Halford GR: (1998) Life prediction of thermo-mechanical fatigue using total strain version of strain range partitioning (SRP) – a proposal. NASA TP, 2779Google Scholar
  33. 33.
    Sehitoglu H, Qing X, Smith T, Maier HJ, Allison JA: (2000) Stress–strain response of a cast 319-T6 aluminium under thermo-mechanical loading. Metall mater trans A, 31A:139–151Google Scholar
  34. 34.
    Shercliff HR, Ashby MF: (1990) Process model for age hardening of aluminium alloys - I. The model. Acta metall mater 38(10):1789–1802CrossRefGoogle Scholar
  35. 35.
    Simon C, Santacreu PO: (2002) Life time prediction of exhaust manifolds. In: Biallas G, Maier HJ, Hahn O, Herrmann K, Vollertsen F (eds) Proceedings CAMP2002—high-temperature fatigue. Bonifatius GmbH Druck, Paderborn, pp 257–267Google Scholar
  36. 36.
    Skelton RP: (2004) Hysteresis, yield, and energy dissipation during thermo-mechanical fatigue of a ferritic steel. Int J Fatigue 26:253–264CrossRefGoogle Scholar
  37. 37.
    Smith KN, Watson P, Topper TH: (1970) A stress–strain function for the fatigue of metals. J Mat 5(4):767–778Google Scholar
  38. 38.
    Song G, Hyun J, Ha J: (2001) Creep-fatigue life prediction of 13CrMo44 steels by using the plastic strain energy. In: Proceedings of temperature fatigue interaction, SF2M, pp 47–54Google Scholar
  39. 39.
    Thomas JJ, Verger L, Bignonnet A, Charkaluk E: (2004) Thermo-mechanical design in automotive industry. Fat and fract of eng mat and struct 27:887–895CrossRefGoogle Scholar
  40. 40.
    Tomkins B, Sumner G, Wareing J: (1979) Factors affecting crack propagation in low-cycle fatigue. In: Rie K-T, Haibach E (eds) International symposium on low cycle fatigue strength and elasto-plastic behaviour in materials. DVM, Berlin, pp 495–508Google Scholar
  41. 41.
    Trampert S, Maassen F: (2004) Zylinderköpfe für hohe Spitzendrücke und Literleistungen. In: Ventiltrieb und Zylinderkopf, VDI-Berichte 1813. VDI Verlag GmbH, Düsseldorf, S. 203–216Google Scholar
  42. 42.
    Zamrik SY, Renauld ML: (2000) Thermo-mechanical out-of-phase fatigue life of overlay coated IN-738LC gas turbine. In: Sehitoglu H, Maier HJ (eds) Thermo-mechanical fatigue behaviour of materials: Third volume, STP 1371, American society for testing and materials, West Conshohocken, pp 119–137Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Martin Riedler
    • 1
  • Heinz Leitner
    • 2
  • Bernd Prillhofer
    • 2
  • Gerhard Winter
    • 1
  • Wilfried Eichlseder
    • 1
    • 2
  1. 1.University of Leoben, Christian Doppler Laboratory for Fatigue AnalysisLeobenAustria
  2. 2.Chair Mechanical EngineeringUniversity of LeobenLeobenAustria

Personalised recommendations