Advertisement

Meccanica

, Volume 41, Issue 2, pp 219–232 | Cite as

Marangoni Mixed Convection Boundary Layer Flow

  • A. J. Chamkha
  • I. Pop
  • H. S. TakharEmail author
Article

Abstract

The paper deals with a steady coupled dissipative layer, called Marangoni mixed convection boundary layer, which can be formed along the interface of two immiscible fluids, in surface driven flows. The mixed convection boundary layer is generated when besides the Marangoni effects there are also buoyancy effects due to gravity and external pressure gradient effects. We shall use a model proposed by Golia and Viviani (L’ Aerotecnica missili e Spazio 64 (1985) 29–35, Meccanica 21 (1986) 200–204) wherein the Marangoni coupling condition has been included into the boundary conditions at the interface. The similarity equations are first determined, and the pertinent equations are solved numerically for some values of the governing parameters and the features of the flow and temperature fields as well as the interface velocity and heat transfer at the interface are analysed and discussed.

Keywords

Coupled Marangoni boundary layer Combined convection Numerical solution Immiscible fluids Fluid mechanics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blottner, F.G. 1970‘Finite difference-methods of solutions of the boundary layer equations’AIAA J.8193205zbMATHMathSciNetGoogle Scholar
  2. 2.
    Christopher, D.M., Wang, B.-X. 2001‘Similarity solution for Marangoni convection around a vapor bubble during nucleation and growth’Int. J. Heat Mass Transfer44799810CrossRefGoogle Scholar
  3. 3.
    Golia, C., Viviani, A. 1985‘Marangoni buoyant boundary layers’L’Aerotecnica Missili e Spazio642935Google Scholar
  4. 4.
    Golia, C., Viviani, A. 1986‘Non isobaric boundary layers related to Marangoni flows’Meccanica21200204CrossRefADSGoogle Scholar
  5. 5.
    Napolitano L.G., ‘Microgravity fluid dynamics’, in: 2nd Levitch Conference, Washington, 1978.Google Scholar
  6. 6.
    Napolitano, L.G., ‘Marangoni boundary layers’, in: Proceedings of the 3rd European Symposium on Material Science in Space, Grenoble, ESA SP-142, June 1979.Google Scholar
  7. 7.
    Napolitano, L.G. 1982‘Surface and buoyancy driven free convection’Acta Astronautica9199215CrossRefGoogle Scholar
  8. 8.
    Napolitano, L.G., Golia, C. 1981‘Coupled Marangoni boundary layers’Acta Astronautica8417434CrossRefGoogle Scholar
  9. 9.
    Napolitano, L.G., Russo, G. 1984‘Similar axially symmetric Marangoni boundary layers’Acta Astronautica11189198CrossRefGoogle Scholar
  10. 10.
    Napolitano, L.G., Carlomagno, G.M., Vigo, P. 1977‘New classes of similar solutions for laminar free convection problems’Int. J. Heat Mass Transfer20215226CrossRefGoogle Scholar
  11. 11.
    Napolitano, L.G., Viviani, A., Savino, R. 1992‘Double-diffusive boundary layers along vertical free surfaces’Int. J. Heat Mass Transfer3510031025CrossRefADSGoogle Scholar
  12. 12.
    Oron, A., Rosenau, P. 1994‘On a nonlinear thermocapillary effect in thin liquid layers’J. Fluid Mech.273361374CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Pop, I., Postelnicu, A., Groşan, T. 2001‘Thermosolutal Marangoni forced convection boundary layers’Meccanica36555571CrossRefGoogle Scholar
  14. 14.
    Skarda, J.R.L., Jacqmin, D., McCaughan, F.E. 1998‘Exact and approximate solutions to the double-diffusive Marangoni-Bénard problem with cross-diffusive terms’J. Fluid Mech.366109133CrossRefADSGoogle Scholar
  15. 15.
    Straughan, B. 2001‘Surface-tension-driven convection in a fluid overlying a porous layer’J. Comp. Phys.170320337CrossRefADSzbMATHGoogle Scholar
  16. 16.
    Thess, A., Spirn, D., Jüttner, B. 1997‘A two-dimensional model for slow convection at infinite Marangoni number’J. Fluid Mech.331283312CrossRefADSGoogle Scholar
  17. 17.
    Zeng, Z., Mizuseki, H., Higashino, K., Kawazoe, Y. 1999‘Direct numerical simulation of oscillatory Marangoni convection in cylindrical liquid bridges’J. Crystal Growth204395404CrossRefGoogle Scholar
  18. 18.
    Zeng, Z., Mizuseki, H., Shimamura, K., Higashino, K., Fukuda, T., Kawazoe, Y. 2001‘Marangoni convection in model of floating zone under microgravity’J. Crystal Growth229601604CrossRefGoogle Scholar
  19. 19.
    Zeng, Z., Mizuseki, H., Simamura, K., Fukuda, T., Higashino, K., Kawazoe, Y. 2001‘Three-dimensional oscillatory thermocapillary convection in liquid bridge under microgravity’Int. J. Heat Mass Transfer4437653774CrossRefGoogle Scholar
  20. 20.
    Zeng, Z., Mizuseki, H., Shimamura, K., Fukuda, T., Kawazoe, Y., Higashino, K. 2001‘Usefulness of experiments with model fluid for thermocapillary convection – effect of Prandtl number on two-dimensional thermocapillary’J. Crystal Growth234272278CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Manufacturing Engineering DepartmentThe Public Authority for Applied Education and TrainingShuweikhKuwait
  2. 2.Faculty of MathematicsUniversity of ClujClujRomania
  3. 3.Department of EngineeringManchester Metropolitan UniversityManchesterU.K

Personalised recommendations