, Volume 39, Issue 6, pp 531–546 | Cite as

Viscoelastic Solids of Exponential Type. I. Minimal Representations and Controllability

  • Mauro Fabrizio
  • Claudio Giorgi
  • Maria Grazia Naso


Certain results about state–space representation, minimality and controllability of a linear viscoelastic solid element of exponential type (VSET) are presented. In particular, we prove that VSET can be viewed as materials with finite memory. This is a first part of a plan which will be continued in a next paper, by studying free energies, stability and attractors in viscoelasticity of exponential type.


Viscoelasticity  Continuum Mechanics  Controllability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Coleman, B, Owen, D 1974A mathematical foundation of thermodynamicsArch. Rational Mech. Anal.541104Google Scholar
  2. Del Piero, G, Deseri, L 1995Monotonic, completely monotonic, and exponential relaxation functions in linear viscoelasticityQuart. Appl. Math53273300Google Scholar
  3. Del Piero, G, Deseri, L 1997On the concepts of state and free energy in linear viscoelasticityArch. Rational Mech. Anal138135Google Scholar
  4. Fabrizio, M, Giorgi, C, Morro, A 1994Free energies and dissipation properties for systems with memoryArch. Rational Mech. Anal.125341373Google Scholar
  5. Fabrizio, M, Morro, A 1988Viscoelastic relaxation functions compatible with thermodynamicsJ. Elasticity196375Google Scholar
  6. Fabrizio, M, Morro, A 1992Mathematical Problems in Linear ViscoelasticitySociety for Industrial and Applied Mathematics (SIAM)Philadelphia, PAGoogle Scholar
  7. Gentili, G 2002Maximum recoverable work, minimum free energy and state space in linear viscoelasticityQuart. Appl. Math.60153182Google Scholar
  8. Graffi, D, Fabrizio, M 1990On the notion of state for viscoelastic materials of ‘‘rate’’ typeAtti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.83201208Google Scholar
  9. Noll, W 1972A new mathematical theory of simple materialsArch. Rational Mech. Anal.48150Google Scholar
  10. Truesdell, C., Noll, W. 1965The non-linear field theories of mechanics Handbuch der Physik, Band III/3Springer-VerlagBerlinGoogle Scholar
  11. Zabczyk, J. 1992Mathematical Control Theory An IntroductionBirkhäuser Boston Inc.Boston, MAGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2005

Authors and Affiliations

  • Mauro Fabrizio
    • 1
  • Claudio Giorgi
    • 2
  • Maria Grazia Naso
    • 2
  1. 1.Dipartimento di Matematica, Facoltà di IngegneriaUniversità di BolognaBolognaItalia
  2. 2.Dipartimento di Matematica, Facoltà di IngegneriaUniversità di BresciaBresciaItalia

Personalised recommendations