Astrocyte ablation induced by La-aminoadipate (L-AAA) potentiates remyelination in a cuprizone demyelinating mouse model

  • Soheila Madadi
  • Parichehr Pasbakhsh
  • Fatemeh Tahmasebi
  • Keywan Mortezaee
  • Maryam Khanehzad
  • Fatemeh Beigi Boroujeni
  • Golaleh Noorzehi
  • Iraj Ragerdi KashaniEmail author
Original Article


Chronic demyelination in the central nervous system (CNS) is accompanied by an increase in the number of reactive astrocytes and astrogliosis. There are controversial issues regarding astrocytes and their roles in demyelinating diseases in particular for multiple sclerosis (MS). We aimed to evaluate possible roles for pharmacologic astrocyte ablation strategy using La-aminoadipate (L-AAA) on remyelination in a cuprizone model of demyelination. Male C57BL/6 mice were fed with 0.2% cuprizone for 12 weeks followed by 2-week administration of L-AAA through a cannula inserted 1 mm above the corpus callosum. Rotarod test showed a significant decrease in the range of motor coordination deficits after ablation of astrocytes in mice receiving cuprizone. Results of Luxol fast blue (LFB) and transmission electron microscopy (TEM) for evaluation of myelin content within the corpus callosum revealed a noticeable rise in the percentage of myelinated areas and in the number of myelinated fibers after L-AAA administration in the animals. Astrocyte ablation reduced protein expressions for GFAP (an astrocyte marker) and Iba-1 (a microglial marker), but increased expression of Olig2 (an oligodendrocyte marker) assessed by immunofluorescence. Finally, expression of genes related to recruitment of microglia (astrocyte chemokines CXCL10 and CXCL12) and suppression of oligodendrocyte progenitor cell (OPC) differentiation (astrocyte peptides ET-1 and EDNRB) showed a considerable decrease after administration of L-AAA (for all p < 0.05). These results are indicative of improved remyelination after ablation of astrocytes possibly through hampering microgliosis and astrogliosis and a further rise in the number of matured Olig2+ cells.


Astrocyte ablation Cuprizone La-aminoadipate (L-AAA) Multiple sclerosis (MS) Remylination Corpus callosum 



The present study has been supported by Tehran University of Medical Sciences and Health Services, Tehran, Iran (Grant number 95-04-30-33652).

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.


  1. Acs P, Kipp M, Norkute A, Johann S, Clarner T, Braun A, Berente Z, Komoly S, Beyer C (2009) 17β-estradiol and progesterone prevent cuprizone provoked demyelination of corpus callosum in male mice. Glia 57(8):807–814CrossRefGoogle Scholar
  2. Aryanpour R, Pasbakhsh P, Zibara K, Namjoo Z, Boroujeni FB, Shahbeigi S, Kashani IR, Beyer C, Zendehdel A (2017) Progesterone therapy induces an M1 to M2 switch in microglia phenotype and suppresses NLRP3 inflammasome in a cuprizone-induced demyelination mouse model. Int Immunopharmacol 51:131–139CrossRefGoogle Scholar
  3. Back SA, Tuohy TM, Chen H, Wallingford N, Craig A, Struve J, Luo NL, Banine F, Liu Y, Chang A (2005) Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. Nat Med 11(9):966–972CrossRefGoogle Scholar
  4. Baron W, Colognato H, Ffrench-Constant C (2005) Integrin-growth factor interactions as regulators of oligodendroglial development and function. Glia 49(4):467–479CrossRefGoogle Scholar
  5. Bianchi R, Kastrisianaki E, Giambanco I, Donato R (2011) S100B protein stimulates microglia migration via RAGE-dependent up-regulation of chemokine expression and release. J Biol Chem 286(9):7214–7226Google Scholar
  6. Biber K, Dijkstra I, Trebst C, De Groot C, Ransohoff R, Boddeke H (2002) Functional expression of CXCR3 in cultured mouse and human astrocytes and microglia. Neuroscience 112(3):487–497CrossRefGoogle Scholar
  7. Chang A, Tourtellotte WW, Rudick R, Trapp BD (2002) Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N Engl J Med 346(3):165–173CrossRefGoogle Scholar
  8. Chari D, Huang W, Blakemore W (2003) Dysfunctional oligodendrocyte progenitor cell (OPC) populations may inhibit repopulation of OPC depleted tissue. J Neurosci Res 73(6):787–793CrossRefGoogle Scholar
  9. Clemente D, Ortega MC, Melero-Jerez C, De Castro F (2013) The effect of glia-glia interactions on oligodendrocyte precursor cell biology during development and in demyelinating diseases. Front Cell Neurosci 7:268CrossRefGoogle Scholar
  10. Correale J, Farez MF (2015) The role of astrocytes in multiple sclerosis progression. Front Neurol 6:180CrossRefGoogle Scholar
  11. D’haeseleer M, Beelen R, Fierens Y, Cambron M, Vanbinst A-M, Verborgh C, Demey J, De Keyser J (2013) Cerebral hypoperfusion in multiple sclerosis is reversible and mediated by endothelin-1. Proc Natl Acad Sci USA 110(14):5654–5658Google Scholar
  12. Foale S, Berry M, Logan A, Fulton D, Ahmed Z (2017) LINGO-1 and AMIGO3, potential therapeutic targets for neurological and dysmyelinating disorders? Neural Regen Res 12(8):1247CrossRefGoogle Scholar
  13. Franklin RJ, Kotter MR (2008) The biology of CNS remyelination. J Neurol 255(1):19–25CrossRefGoogle Scholar
  14. Frohman EM, Racke MK, Raine CS (2006) Multiple sclerosis—the plaque and its pathogenesis. N Engl J Med 354(9):942–955CrossRefGoogle Scholar
  15. Gadea A, Aguirre A, Haydar TF, Gallo V (2009) Endothelin-1 regulates oligodendrocyte development. J Neurosci 29(32):10047–10062CrossRefGoogle Scholar
  16. Ghareghani M, Ghanbari A, Dokoohaki S, Farhadi N, Hosseini SM, Mohammadi R, Sadeghi H (2016) Methylprednisolone improves lactate metabolism through reduction of elevated serum lactate in rat model of multiple sclerosis. Biomed Pharmacother 84:1504–1509CrossRefGoogle Scholar
  17. Gochenauer GE, Robinson MB (2001) Dibutyryl-cAMP (dbcAMP) up-regulates astrocytic chloride-dependent l-[3H] glutamate transport and expression of both system xc− subunits. J Neurochem 78(2):276–286CrossRefGoogle Scholar
  18. Hammond TR, Gadea A, Dupree J, Kerninon C, Nait-Oumesmar B, Aguirre A, Gallo V (2014) Astrocyte-derived endothelin-1 inhibits remyelination through notch activation. Neuron 81(3):588–602CrossRefGoogle Scholar
  19. Hammond TR, McEllin B, Morton PD, Raymond M, Dupree J, Gallo V (2015) Endothelin-B receptor activation in astrocytes regulates the rate of oligodendrocyte regeneration during remyelination. Cell Rep 13(10):2090–2097CrossRefGoogle Scholar
  20. John GR, Shankar SL, Shafit-Zagardo B, Massimi A, Lee SC, Raine CS, Brosnan CF (2002) Multiple sclerosis: re-expression of a developmental pathway that restricts oligodendrocyte maturation. Nat Med 8(10):1115–1121CrossRefGoogle Scholar
  21. Karussis D, Karageorgiou C, Vaknin-Dembinsky A, Gowda-Kurkalli B, Gomori JM, Kassis I, Bulte JW, Petrou P, Ben-Hur T, Abramsky O (2010) Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol 67(10):1187–1194CrossRefGoogle Scholar
  22. Khurgel M, Koo AC, Ivy GO (1996) Selective ablation of astrocytes by intracerebral injections of α-aminoadipate. Glia 16(4):351–358CrossRefGoogle Scholar
  23. Kieseier BC, Stüve O (2011) A critical appraisal of treatment decisions in multiple sclerosis—old versus new. Nat Rev Neurol 7(5):255–262CrossRefGoogle Scholar
  24. Kipp M, Clarner T, Dang J, Copray S, Beyer C (2009) The cuprizone animal model: new insights into an old story. Acta Neuropathol 118(6):723–736CrossRefGoogle Scholar
  25. Ko EM, Ma JH, Guo F, Miers L, Lee E, Bannerman P, Burns T, Ko D, Sohn J, Soulika AM (2014) Deletion of astroglial CXCL10 delays clinical onset but does not affect progressive axon loss in a murine autoimmune multiple sclerosis model. J Neuroinflammation 11(1):105CrossRefGoogle Scholar
  26. Li Z-W, Tang R-H, Zhang J-P, Tang Z-P, Qu W-S, Zhu W-H, Li J-J, Xie M-J, Tian D-S, Wang W (2011) Inhibiting epidermal growth factor receptor attenuates reactive astrogliosis and improves functional outcome after spinal cord injury in rats. Neurochem Int 58(7):812–819CrossRefGoogle Scholar
  27. McKhann GM (1982) Guillain-Barré syndrome is there a role for plasmapheresis? An update. Neurology 32(11):1282–1282CrossRefGoogle Scholar
  28. Nair A, Frederick TJ, Miller SD (2008) Astrocytes in multiple sclerosis: a product of their environment. Cell Mol Life Sci 65(17):2702–2720CrossRefGoogle Scholar
  29. Nessler J, Bénardais K, Gudi V, Hoffmann A, Tejedor LS, Janßen S, Prajeeth CK, Baumgärtner W, Kavelaars A, Heijnen CJ (2013) Effects of murine and human bone marrow-derived mesenchymal stem cells on cuprizone induced demyelination. PLoS One 8(7):e69795CrossRefGoogle Scholar
  30. Nishimura R, Santos D, Fu S-T, Dwyer B (2000) Induction of cell death by L-alpha-aminoadipic acid exposure in cultured rat astrocytes: relationship to protein synthesis. Neurotoxicology 21(3):313–320PubMedGoogle Scholar
  31. Qin H, Benveniste EN (2012) ELISA methodology to quantify astrocyte production of cytokines/chemokines in vitro. Methods Mol Biol 814:235–249Google Scholar
  32. Ransohoff RM, Hamilton TA, Tani M, Stoler MH, Shick HE, Major JA, Estes ML, Thomas DM, Tuohy VK (1993) Astrocyte expression of mRNA encoding cytokines IP-10 and JE/MCP-1 in experimental autoimmune encephalomyelitis. FASEB J 7(6):592–600CrossRefGoogle Scholar
  33. Rappert A, Bechmann I, Pivneva T, Mahlo J, Biber K, Nolte C, Kovac AD, Gerard C, Boddeke HW, Nitsch R (2004) CXCR3-dependent microglial recruitment is essential for dendrite loss after brain lesion. J Neurosci 24(39):8500–8509CrossRefGoogle Scholar
  34. Skripuletz T, Gudi V, Hackstette D, Stangel M (2011) De-and remyelination in the CNS white and grey matter induced by cuprizone: the old, the new, and the unexpected. Histol Histopathol 26(12):1585–1597PubMedGoogle Scholar
  35. Skripuletz T, Hackstette D, Bauer K, Gudi V, Pul R, Voss E, Berger K, Kipp M, Baumgärtner W, Stangel M (2012) Astrocytes regulate myelin clearance through recruitment of microglia during cuprizone-induced demyelination. Brain 136(1):147–167CrossRefGoogle Scholar
  36. Stoffels JM, de Jonge JC, Stancic M, Nomden A, van Strien ME, Ma D, Šišková Z, Maier O, Ffrench-Constant C, Franklin RJ (2013) Fibronectin aggregation in multiple sclerosis lesions impairs remyelination. Brain 136(1):116–131CrossRefGoogle Scholar
  37. Stoffels JM, Hoekstra D, Franklin RJ, Baron W, Zhao C (2015) The EIIIA domain from astrocyte-derived fibronectin mediates proliferation of oligodendrocyte progenitor cells following CNS demyelination. Glia 63(2):242–256CrossRefGoogle Scholar
  38. Tanuma N, Sakuma H, Sasaki A, Matsumoto Y (2006) Chemokine expression by astrocytes plays a role in microglia/macrophage activation and subsequent neurodegeneration in secondary progressive multiple sclerosis. Acta Neuropathol 112(2):195–204CrossRefGoogle Scholar
  39. Tsai MJ, Chang Y-F, Schwarcz R, Brookes N (1996) Characterization ofl-α-aminoadipic acid transport in cultured rat astrocytes. Brain Res 741(1–2):166–173CrossRefGoogle Scholar
  40. Voskuhl RR, Peterson RS, Song B, Ao Y, Morales LBJ, Tiwari-Woodruff S, Sofroniew MV (2009) Reactive astrocytes form scar-like perivascular barriers to leukocytes during adaptive immune inflammation of the CNS. J Neurosci 29(37):11511–11522CrossRefGoogle Scholar
  41. Williams A, Piaton G, Aigrot M-S, Belhadi A, Théaudin M, Petermann F, Thomas J-L, Zalc B, Lubetzki C (2007a) Semaphorin 3A and 3F: key players in myelin repair in multiple sclerosis? Brain 130(10):2554–2565CrossRefGoogle Scholar
  42. Williams A, Piaton G, Lubetzki C (2007b) Astrocytes—friends or foes in multiple sclerosis? Glia 55(13):1300–1312CrossRefGoogle Scholar
  43. Yamamoto S, Gotoh M, Kawamura Y, Yamashina K, Yagishita S, Awaji T, Tanaka M, Maruyama K, Murakami-Murofushi K, Yoshikawa K (2014) Cyclic phosphatidic acid treatment suppress cuprizone-induced demyelination and motor dysfunction in mice. Eur J Pharmacol 741:17–24CrossRefGoogle Scholar
  44. Zhang Y, Argaw AT, Gurfein BT, Zameer A, Snyder BJ, Ge C, Lu QR, Rowitch DH, Raine CS, Brosnan CF (2009) Notch1 signaling plays a role in regulating precursor differentiation during CNS remyelination. Proc Natl Acad Sci USA 106(45):19162–19167Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Soheila Madadi
    • 1
  • Parichehr Pasbakhsh
    • 1
  • Fatemeh Tahmasebi
    • 1
  • Keywan Mortezaee
    • 2
  • Maryam Khanehzad
    • 1
  • Fatemeh Beigi Boroujeni
    • 1
  • Golaleh Noorzehi
    • 3
  • Iraj Ragerdi Kashani
    • 1
    Email author
  1. 1.Department of Anatomy, School of MedicineTehran University of Medical SciencesTehranIran
  2. 2.Department of Anatomy, School of MedicineKurdistan University of Medical SciencesSanandajIran
  3. 3.Laboratory Technology FacultyKhatam Al-Nabieen UniversityKabulAfghanistan

Personalised recommendations