Advertisement

Evidence of hippocampal astrogliosis and antioxidant imbalance after L-tyrosine chronic administration in rats

  • Milena Carvalho-Silva
  • Lara M. Gomes
  • Samira Dal-Toé de Prá
  • Leticia B. Wessler
  • Patricia F. Schuck
  • Giselli Scaini
  • Andreza Fabro de Bem
  • Carlos H. Blum-Silva
  • Flávio H. Reginatto
  • Jade de Oliveira
  • Emilio L. StreckEmail author
Original Article
  • 28 Downloads

Abstract

Tyrosinemia type II is a genetic disorder characterized by elevated blood levels of the amino acid tyrosine caused by the deficiency of tyrosine aminotransferase enzyme, resulting in neurologic and developmental difficulties in the patients. Although neurological sequelae are common in Tyrosinemia type II patients, the mechanisms involved are still poorly understood. The oxidative stress appears to be, at least in part, responsible for neurological complication in this inborn error metabolism. We observed that an acute injection of tyrosine in rats caused a massive oxidative stress in different brain structures. The glutathione system and superoxide dismutase enzyme are relevant antioxidant strategies of the cells and tissues, including in the brain. Other important point is the strong relation between oxidative damage and inflammatory events. Herein, we investigated the effects of chronic administration of tyrosine in the hippocampus of young rats, with emphasis in the activity of GSH related enzymes and superoxide dismutase enzyme, and the astrocytosis. We observed that rats exposed to high levels of tyrosine presented an increased content of tyrosine, which was associated with an increment in the activity of glutathione peroxidase and glutathione reductase as well as with a diminished activity of superoxide dismutase. This antioxidant imbalance was accompanied by enhanced glial fibrillary acidic protein immunoreactivity, a marker of astrocytes, in the brain area studied. In conclusion, hippocampus astrogliosis is also a characteristic of brain alteration in Tyrosinemia. In addition, the chronic exposition to high levels of tyrosine is associated with an alteration in the activity of fundamental antioxidant enzymes.

Keywords

Tyrosinemia type II L-tyrosine Neurological sequelae Oxidative stress Astrogliosis 

Notes

Acknowledgements

Laboratory of Experimental Neurology (Brazil) is one of the centers of the National Institute for Molecular Medicine (INCT-MM) and one of the members of the Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC).

Funding

This research was supported by grants from Universidade do Extremo Sul Catarinense (UNESC), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All experimental procedures were carried out in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals, with the approval of the Ethics Committee of UNESC (protocols numbers 74/2014-01 and 14/2016-01).

References

  1. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126.  https://doi.org/10.1016/S0076-6879(84)05016-3 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ballatori N, Krance SM, Notenboom S, Shi S, Tieu K, Hammond CL (2009) Glutathione dysregulation and the etiology and progression of human diseases. Biol Chem 390:191–214.  https://doi.org/10.1515/BC.2009.033 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bannister JV, Calabrese L (1987) Assays for superoxide dismutase. Methods Biochem Anal 32:279–312.  https://doi.org/10.1002/9780470110539.ch5 CrossRefPubMedGoogle Scholar
  4. Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE (2014) Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev 94:329–354.  https://doi.org/10.1152/physrev.00040.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Biswas SK (2016) Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox? Oxid Med Cell Longev 2016:1–9.  https://doi.org/10.1155/2016/5698931 Hindawi Publishing CorporationCrossRefGoogle Scholar
  6. Bongiovanni R, Yamamoto BK, Simpson C, Jaskiw GE (2003) Pharmacokinetics of systemically administered tyrosine: a comparison of serum, brain tissue and in vivo microdialysate levels in the rat. J Neurochem 87:310–317.  https://doi.org/10.1046/j.1471-4159.2003.02007.x CrossRefPubMedGoogle Scholar
  7. Browne RW, Armstrong D (1998) Reduced glutathione and glutathione disulfide. Methods Mol Biol 108:347–352.  https://doi.org/10.1385/0-89603-472-0:347 CrossRefPubMedGoogle Scholar
  8. Carlberg I, Mannervik B (1985) Glutathione reductase. Methods Enzymol 113:484–490.  https://doi.org/10.1016/S0076-6879(85)13062-4 CrossRefPubMedGoogle Scholar
  9. Carvalho-Silva M, Gomes LM, Scaini G, Rebelo J, Damiani AP, Pereira M, Andrade VM, Gava FF, Valvassori SS, Schuck PF, Ferreira GC, Streck EL (2017) Omega-3 fatty acid supplementation decreases DNA damage in brain of rats subjected to a chemically induced chronic model of Tyrosinemia type II. Metab Brain Dis 32:1043–1050.  https://doi.org/10.1007/s11011-017-9994-3 CrossRefPubMedGoogle Scholar
  10. Carvalho-Silva M, Gomes LM, Gomes ML, Ferreira BK, Schuck PF, Ferreira GC, Dal-Pizzol F, de Oliveira J, Scaini G, Streck EL (2019) Omega-3 fatty acid supplementation can prevent changes in mitochondrial energy metabolism and oxidative stress caused by chronic administration of L-tyrosine in the brain of rats. Metab Brain Dis 34(4):1207–1219.  https://doi.org/10.1007/s11011-019-00411-6 CrossRefPubMedGoogle Scholar
  11. Chen Y, Chan PH, Swanson RA (2001) Astrocytes overexpressing cu,Zn superoxide dismutase have increased resistance to oxidative injury. Glia 33:343–347.  https://doi.org/10.1002/1098-1136(20010315)33:4<343::AID-GLIA1033>3.0.CO;2-H CrossRefPubMedGoogle Scholar
  12. Chen X, Guo C, Kong J (2012) Oxidative stress in neurodegenerative diseases. Neural Regen Res 7:376–385.  https://doi.org/10.3969/j.issn.1673-5374.2012.05.009 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L (2018) Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9:7204–7218.  https://doi.org/10.18632/oncotarget.23208 CrossRefPubMedGoogle Scholar
  14. Claycomb KI, Johnson KM, Winokur PN, Sacino AV, Crocker SJ (2013) Astrocyte regulation of CNS inflammation and remyelination. Brain Sci 3:1109–1127.  https://doi.org/10.3390/brainsci3031109 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cvetanovic M, Ingram M, Orr H, Opal P (2015) Early activation of microglia and astrocytes in mouse models of spinocerebellar Ataxia type 1. Neuroscience 289:289–299.  https://doi.org/10.1016/j.neuroscience.2015.01.003 CrossRefPubMedPubMedCentralGoogle Scholar
  16. de Oliveira J, Moreira EL, dos Santos DB, Piermartiri TC, Dutra RC, Pinton S, Tasca CI, Farina M, Prediger RD, de Bem AF (2014) Increased susceptibility to amyloid-β-induced neurotoxicity in mice lacking the low-density lipoprotein receptor. J Alzheimers Dis 41:43–60.  https://doi.org/10.3233/JAD-132228 CrossRefPubMedGoogle Scholar
  17. Deon M, Sitta A, Faverzani JL, Guerreiro GB, Donida B, Marchetti DP, Mescka CP, Ribas GS, Coitinho AS, Wajner M, Vargas CR (2015) Urinary biomarkers of oxidative stress and plasmatic inflammatory profile in phenylketonuric treated patients. Int J Dev Neurosci. 47(Pt B):259–265.CrossRefGoogle Scholar
  18. Dringen R, Hirrlinger J (2003) Glutathione pathways in the brain. Biol Chem 384:505–516.  https://doi.org/10.1515/BC.2003.059 CrossRefPubMedGoogle Scholar
  19. Espinosa-Diez C, Miguel V, Mennerich D, Kietzmann T, Sánchez-Pérez P, Cadenas S, Lamas S (2015) Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol 6:183–197.  https://doi.org/10.1016/j.redox.2015.07.008 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ferreira GK, Jeremias IC, Scaini G, Carvalho-Silva M, Gomes LM, Furlanetto CB, Morais MO, Schuck PF, Ferreira GC, Streck EL (2013a) Effect of acute and chronic administration of L-tyrosine on nerve growth factor levels in rat brain. Neurochem Res 38:1742–1746.  https://doi.org/10.1007/s11064-013-1078-0 CrossRefPubMedGoogle Scholar
  21. Ferreira GK, Scaini G, Carvalho-Silva M, Gomes LM, Borges LS, Vieira JS, Constantino LS, Ferreira GC, Schuck PF, Streck EL (2013b) Effect of L-tyrosine in vitro and in vivo on energy metabolism parameters in brain and liver of young rats. Neurotox Res 23:327–335.  https://doi.org/10.1007/s12640-012-9345-4 CrossRefPubMedGoogle Scholar
  22. Ferreira GK, Scaini G, Jeremias IC, Carvalho-Silva M, Gonçalves CL, Pereira TCB, Oliveira GMT, Kist LW, Bogo MR, Schuck PF, Ferreira GC, Streck EL (2014) An evaluation of the effects of acute and chronic L –tyrosine administration on BDNF levels and bdnf mRNA expression in the rat brain. Mol Neurobiol 49:734–740.  https://doi.org/10.1007/s12035-013-8552-1 CrossRefPubMedGoogle Scholar
  23. Ferreira GK, Carvalho-Silva M, Gomes LM, Scaini G, Teixeira LJ, Mota IT, Schuck PF, Ferreira GC, Streck EL (2015) The characterization of neuroenergetic effects of chronic L-tyrosine administration in young rats: evidence for striatal susceptibility. Metab Brain Dis 30:215–221.  https://doi.org/10.1007/s11011-014-9615-3 CrossRefPubMedGoogle Scholar
  24. Hirrlinger J, Schulz JB, Dringen R (2002) Effects of dopamine on the glutathione metabolism of cultured astroglial cells: implications for Parkinson’s disease. J Neurochem 82:458–467.  https://doi.org/10.1046/j.1471-4159.2002.01013.x CrossRefPubMedGoogle Scholar
  25. Kimelberg HK (2010) Functions of mature mammalian astrocytes: a current view. Neuroscientist 16:79–106.  https://doi.org/10.1177/1073858409342593 CrossRefPubMedGoogle Scholar
  26. Liddell JR, Robinson SR, Dringen R, Bishop GM (2010) Astrocytes retain their antioxidant capacity into advanced old age. Glia 58:1500–1509.  https://doi.org/10.1002/glia.21024 CrossRefPubMedGoogle Scholar
  27. Liedhegner EAS, Xing-Huang G, Mieyal JJ (2012) Mechanisms of altered redox Regulationin neurodegenerative diseases— focus on S-Glutathionylation. Antioxid Redox Signal 16:6.  https://doi.org/10.1089/ars.2011.4119 CrossRefGoogle Scholar
  28. Lovell MA, Ehmann WD, Butler SM, Markesbery WR (1995) Elevated thiobarbituric acid-reactive substances and antioxidant enzyme activity in the brain in Alzheimer’s disease. Neurology 45:1594–1601.  https://doi.org/10.1212/WNL.45.8.1594 CrossRefPubMedGoogle Scholar
  29. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  30. Macêdo LG, Carvalho-Silva M, Ferreira GK, Vieira JS, Olegário N, Gonçalves RC, Vuolo FS, Ferreira GC, Schuck PF, Dal-Pizzol F, Streck EL (2013) Effect of acute administration of L-tyrosine on oxidative stress parameters in brain of young rats. Neurochem Res 38:2625–2630.  https://doi.org/10.1007/s11064-013-1180-3 CrossRefPubMedGoogle Scholar
  31. Macsai MS, Schwartz TL, Hinkle D, Hummel MB, Mulhern MG, Rootman D (2001) Tyrosinemia type II: nine cases of ocular signs and symptoms. Am J Ophthalmol 132:522–527.  https://doi.org/10.1016/S0002-9394(01)01160-6 CrossRefPubMedGoogle Scholar
  32. Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB (2014) Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 20:1126–1167.  https://doi.org/10.1089/ars.2012.5149 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Peña-Quintana L, Scherer G, Curbelo-Estévez ML, Jiménez-Acosta F, Hartmann B, La Roche F, Meavilla-Olivas S, Pérez-Cerdá C, García-Segarra N, Giguère Y, Huppke P, Mitchell GA, Mönch E, Trump D, Vianey-Saban C, Trimble ER, Vitoria-Miñana I, Reyes-Suárez D, Ramírez-Lorenzo T, Tugores A (2017) Tyrosinemia type II: mutation update, 11 novel mutations and description of 5 independent subjects with a novel founder mutation. Clin Genet 92(3):306–317.  https://doi.org/10.1111/cge.13003 CrossRefPubMedGoogle Scholar
  34. Ramos AC, Ferreira GK, Carvalho-Silva M, Furlanetto CB, Gonçalves CL, Ferreira GC, Schuck PF, Streck EL (2013) Acute administration of l-tyrosine alters energetic metabolism of hippocampus and striatum of infant rats. Int J Dev Neurosci 31:303–307.  https://doi.org/10.1016/j.ijdevneu.2013.03.005 CrossRefPubMedGoogle Scholar
  35. Salim S (2017) Oxidative stress and the central nervous system. J Pharmacol Exp Ther 360(1):201–205.  https://doi.org/10.1124/jpet.116.237503 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Sgaravatti AM, Vargas BA, Zandoná BR, Deckmann KB, Rockenbach FJ, Moraes TB, Monserrat JM, Sgarbi MB, Pederzolli CD, Wyse AT, Wannmacher CM, Wajner M, Dutra-Filho CS (2008) Tyrosine promotes oxidative stress in cerebral cortex of young rats. Int J Dev Neurosci 26:551–559.  https://doi.org/10.1016/j.ijdevneu.2008.05.007 CrossRefPubMedGoogle Scholar
  37. Sgaravatti AM, Magnusson AS, de Oliveira AS, Rosa AP, Mescka CP, Zanin FR, Pederzolli CD, Wyse AT, Wannmacher CM, Wajner M, Dutra-Filho CS (2009) Tyrosine administration decreases glutathione and stimulates lipid and protein oxidation in rat cerebral cortex. Metab Brain Dis 24:415–425.  https://doi.org/10.1007/s11011-009-9153-6 CrossRefPubMedGoogle Scholar
  38. Sitta A, Ribas GS, Mescka CP, Barschak AG, Wajner M, Vargas CR (2014) Neurological damage in MSUD: the role of oxidative stress. Cell Mol Neurobiol 34:157–165.  https://doi.org/10.1007/s10571-013-0002-0 CrossRefPubMedGoogle Scholar
  39. Soares DC, Stroparo MN, Lian YC, Takakura CY, Wolf S, Betz R, Kim CA (2017) Herpetiform keratitis and palmoplantar hyperkeratosis: warning signs for Richner-Hanhart syndrome. J Inherit Metab Dis 40:461–462.  https://doi.org/10.1007/s10545-016-9996-z CrossRefPubMedGoogle Scholar
  40. Sochocka M, Diniz BS, Leszek J (2017) Inflammatory response in the CNS: friend or foe? Mol Neurobiol 54:8071–8089.  https://doi.org/10.1007/s12035-016-0297-1 CrossRefPubMedGoogle Scholar
  41. Streck EL, De Prá SDT, Ferro PR, Carvalho-Silva M, Gomes LM, Agostini JF, Damiani A, Andrade VM, Schuck PF, Ferreira GC, Scaini G (2017) Role of antioxidant treatment on DNA and lipid damage in the brain of rats subjected to a chemically induced chronic model of tyrosinemia type II. Mol Cell Biochem 435:207–214.  https://doi.org/10.1007/s11010-017-3070-5 CrossRefPubMedGoogle Scholar
  42. Uttara B, Singh AV, Zamboni P, Mahajan RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7:65–74.  https://doi.org/10.2174/157015909787602823 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Wang X, Michaelis EK (2010) Selective neuronal vulnerability to oxidative stress in the brain. Front Aging Neurosci 2:12.  https://doi.org/10.3389/fnagi.2010.00012 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–333.  https://doi.org/10.1016/S0076-6879(81)77046-0 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Milena Carvalho-Silva
    • 1
  • Lara M. Gomes
    • 1
  • Samira Dal-Toé de Prá
    • 1
  • Leticia B. Wessler
    • 1
  • Patricia F. Schuck
    • 1
  • Giselli Scaini
    • 1
    • 2
  • Andreza Fabro de Bem
    • 3
  • Carlos H. Blum-Silva
    • 4
  • Flávio H. Reginatto
    • 4
  • Jade de Oliveira
    • 1
    • 5
  • Emilio L. Streck
    • 1
    Email author
  1. 1.Laboratório de Neurologia Experimental, Programa de Pós-graduação em Ciências da SaúdeUniversidade do Extremo Sul Catarinense (UNESC)CriciúmaBrazil
  2. 2.Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical SchoolThe University of Texas Health Science Center at Houston (UTHealth)HoustonUSA
  3. 3.Departamento de Ciências Fisiológicas, Instituto de Ciências BiológicasUniversidade de BrasíliaBrasíliaBrazil
  4. 4.Programa de Pós-graduação em Farmácia, Centro de Ciências da SaúdeUniversidade Federal de Santa CatarinaFlorianópolisBrazil
  5. 5.Programa de Pós-graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations