Prior exercise protects against oxidative stress and motor deficit in a rat model of Parkinson’s disease

  • Leonam Oliver Durval OliveiraEmail author
  • Pedro Iuri Castro da Silva
  • Renato Pereira Rodrigues Filho
  • Raphaely Cristiny Sanches Progênio
  • Victor Douglas Pereira Silva de Oliveira
  • Renata Cunha Silva
  • Mariseth Carvalho de Andrade
  • Jofre Jacob da Silva Freitas
  • Katia Simone Kietzer
Original Article


This study investigated if a prior long-term physical exercise protocol protects the substantia nigra and the striatum against oxidative stress and motor deficits in a Parkinson Disease model induced by 6-hydroxydopamine. Three animal treatment groups were included in the study: sham; 6-hydroxydopamine and 6-hydroxydopamine/exercise. Previously to the intrastriatal lesion by 6-hydroxydopamine, rats in the exercise groups performed a swimming program for 18 weeks. The rats were submitted to behavioral tests before and after intrastriatal 6-hydroxydopamine injection. The oxidative stress was analyzed by Thiobarbituric Acid Reactive Substances and Glutathione reductase activity methods. The exercise decreased lipid peroxidation and increased glutathione reductase activity in the substantia nigra. In contrast, in the striatum, exercise increased lipid peroxidation and decreased glutathione reductase activity. Exercise increased contralateral rotations and reduces immobility levels at 14 days post lesion. The exercise prior to 6-OHDA lesion had protective action only in substantia nigra against oxidative stress.


Parkinson disease Exercise therapy Movement disorders Oxidative stress 



To Elizabeth Sumi Yamada, Anderson Valente Amaral e Riky Douglas Gomes for helping the researchers with the manuscript translation.

Funding information

This study was funded by Fundação Amazônia de Amparo a Estudos e Pesquisas (FAPESPA) by the technical cooperation agreement n° 003/2014-FAPESPA/UEPA.

Compliance with ethical standards

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. (University of Pará State’s Ethics Committee - protocol number 39/14).

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Camargo Filho JCS, Vanderlei LCM, Camargo RCT, Francischeti FA, Belangero WD, Dal Pai V (2006) Efeitos Do Esteróide Anabólico Nandrolona Sobre o Músculo Sóleo de Ratos Submetidos a Treinamento Físico Através de Natação: Estudo Histológico, Histoquímico e Morfométrico. Rev Bras Med Do Esporte 12:243–247. CrossRefGoogle Scholar
  2. Carlberg I, Mannervik B (1975) Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J Biol Chem 250:5475–5480PubMedPubMedCentralGoogle Scholar
  3. Cruz LHC (2012) Exercício Forçado e Prévio à Lesão Melhora Parâmetros Motores e Produção de Fatores Neurotróficos Em Modelo Experimental Da Doença de Parkinson. Universidade Federal de Minas GeraisGoogle Scholar
  4. Fernandez HH (2012) Updates in the medical management of Parkinson disease. Cleve Clin J Med 79:28–35. CrossRefPubMedGoogle Scholar
  5. Goes ATR, Souza LC, Filho CB, Del Fabbro L, De Gomes MG, Boeira SP, Jesse CR (2014) Neuroprotective effects of swimming training in a mouse model of Parkinson’s disease induced by 6-Hydroxydopamine. Neuroscience 256:61–71. CrossRefPubMedGoogle Scholar
  6. Gould TD (2011) The open field test. In: Mood anxiety relat phenotypes mice, charaterization using behavioral tests, vol 63. Humana Press, pp 1–20. Google Scholar
  7. Gu F, Chauhan V, Chauhan A (2015) Glutathione redox imbalance in brain disorders. Curr Opin Clin Nutr Metab Care 18:89–95. CrossRefPubMedGoogle Scholar
  8. Hammond JB, Kruger NJ (1988) The Bradford method for protein quantitation. Methods Mol Biol 3:25–32. CrossRefPubMedGoogle Scholar
  9. Hornykiewicz O (2001) Chemical neuroanatomy of the basal ganglia — normal and in Parkinson’s disease. J Chem Neuroanat 22:3–12. CrossRefPubMedGoogle Scholar
  10. Howells FM, Russell VA, Mabandla MV, Kellaway LA (2005) Stress reduces the neuroprotective effect of exercise in a rat model for Parkinson’s disease. Behav Brain Res 165:210–220. CrossRefPubMedGoogle Scholar
  11. Hwang O (2013) Role of oxidative stress in Parkinson’s disease. Exp Neurobiol 22:11–17. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. Neurol Neurosurg Psychiatry 79:368–376. CrossRefGoogle Scholar
  13. LaHue SC, Comella CL, Tanner CM (2016) The best medicine? The influence of physical activity and inactivity on Parkinson’s disease. Mov Disord 31:1444–1454. CrossRefPubMedGoogle Scholar
  14. Landers MR, Kinney JW, Van Breukelen F (2014) Forced exercise before or after induction of 6-OHDA-mediated nigrostriatal insult does not mitigate behavioral asymmetry in a Hemiparkinsonian rat model. Brain Res 1543:263–270. CrossRefPubMedGoogle Scholar
  15. Li R, Zheng N, Liang T, He Q, Xu L (2013) Puerarin attenuates neuronal degeneration and blocks oxidative stress to elicit a neuroprotective effect on Substantia Nigra injury in 6-OHDA-Lesioned rats. Brain Res 1517:28–35. CrossRefPubMedGoogle Scholar
  16. Marsden CD (1994) Parkinson’s disease. J Neurol Neurosurg Psychiatry 57:672–681. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Mazzetti AP, Fiorile MC, Primavera A, Lo Bello M (2015) Glutathione transferases and neurodegenerative diseases. Neurochem Int 82:10–18. CrossRefPubMedGoogle Scholar
  18. Nonato LF, Rocha-Vieira E, Tossige-Gomes R, Soares AA, Soares BA, Freitas DA, Oliveira MX et al (2016) Swimming training attenuates oxidative damage and increases enzymatic but not non-enzymatic antioxidant defenses in the rat brain. Brazilian J Med Biol Res 49:6–10. CrossRefGoogle Scholar
  19. Ortiz GG, Pacheco Moisés FP, Mireles-Ramírez M, Flores-Alvarado LJ, González-Usigli H, Sánchez-González VJ, Sánchez-López AL, Sánchez-Romero L, Díaz-Barba EI, Santoscoy-Gutiérrez JF, Rivero-Moragrega P (2017) Oxidative stress: love and hate history in central nervous system. Adv Protein Chem Struct Biol 108:1–31. CrossRefPubMedGoogle Scholar
  20. Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic Press. CrossRefGoogle Scholar
  21. Sanberg PR, Bunsey MD, Giordano M, Norman AB (1988) The catalepsy test: its ups and downs. Behav Neurosci 102:748–759. CrossRefPubMedGoogle Scholar
  22. Schwarting RKW, Huston JP (1996) The unilateral 6-Hydroxydopamine lesion model in behavioral brain research. Analysis of functional deficits, recovery and treatments. Prog Neurobiol 50:275–331. CrossRefPubMedGoogle Scholar
  23. Somani SM, Husain K (1996) Exercise training alters kinetics of antioxidant enzymes in rat tissues. Biochem Mol Biol Int 38:587–595PubMedGoogle Scholar
  24. Su RJ, Zhen JL, Wang W, Zhang JL, Zheng Y, Wang XM (2018) Time-course behavioral features are correlated with Parkinson’s disease-associated pathology in a 6-Hydroxydopamine Hemiparkinsonian rat model. Mol Med Rep 17:3356–3363. CrossRefPubMedGoogle Scholar
  25. Tieu K (2011) A guide to neurotoxic animal models of Parkinson’s disease. Cold Spring Harb Perspect Med 1:1–20. CrossRefGoogle Scholar
  26. Torrão AS, Café-Mendes CC, Real CC, Hernandes MS, Ferreira AFB, Santos TO, Chaves-Kirsten GP et al (2012) Abordagens Diferentes, Um Único Objetivo: Compreender Os Mecanismos Celulares Das Doenças de Parkinson e de Alzheimer. Rev Bras Psiquiatr 34:206–218. CrossRefGoogle Scholar
  27. Tuon T, Valvassori SS, Lopes-Borges J, Luciano T, Trom CB, Silva LA, Quevedo J, Souza CT, Lira FS, Pinho RA (2012) Physical training exerts neuroprotective effects in the regulation of neurochemical factors in an animal model of Parkinson’s disease. Neuroscience 227:305–312. CrossRefPubMedGoogle Scholar
  28. Tuon T, Valvassori SS, Dal Pont GC, Paganini CS, Pozzi BG, Luciano TF, Souza PS, Quevedo J, Souza CT, Pinho RA (2014) Physical training prevents depressive symptoms and a decrease in brain-derived neurotrophic factor in Parkinson’s disease. Brain Res Bull 108:106–112. CrossRefPubMedGoogle Scholar
  29. Ungerstedt U, Arbuthnott GW (1970) Quantitative recording of rotational behavior in rats after 6-Hydroxy-dopamine lesions of the nigrostriatal dopamine system. Brain Res 24:485–493. CrossRefPubMedGoogle Scholar
  30. Winterbourn CC (1985) Hemoglobin oxidation and inter-relationship with lipid peroxidation in the red cell. Prog Clin Biol Res 195:173–184PubMedGoogle Scholar
  31. Yang F, Lagerros YT, Bellocco R, Adami H, Fang F, Pedersen NL, Wirdefeldt K (2015) Physical activity and risk of Parkinson’s disease in the Swedish National March Cohort. Brain 138:269–275. CrossRefPubMedGoogle Scholar
  32. Yoon MC, Shin MS, Kim TS, Kim BK, Ko IG, Sung YH, Kim SE, Lee HH, Kim YP, Kim CJ (2007) Treadmill exercise suppresses nigrostriatal dopaminergic neuronal loss in 6-Hydroxydopamine-induced Parkinson’s rats. Neurosci Lett 423:12–17. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Leonam Oliver Durval Oliveira
    • 1
    Email author
  • Pedro Iuri Castro da Silva
    • 1
  • Renato Pereira Rodrigues Filho
    • 1
  • Raphaely Cristiny Sanches Progênio
    • 1
  • Victor Douglas Pereira Silva de Oliveira
    • 1
  • Renata Cunha Silva
    • 1
  • Mariseth Carvalho de Andrade
    • 1
  • Jofre Jacob da Silva Freitas
    • 2
  • Katia Simone Kietzer
    • 2
  1. 1.Laboratory of Morphophysiology Applied to HealthUniversity of Pará StateBelémBrazil
  2. 2.Morphology and Physiological Sciences DepartmentUniversity of Pará StateBelémBrazil

Personalised recommendations