Advertisement

Levels of 25-hydroxyvitamin D3, biochemical parameters and symptoms of depression and anxiety in healthy individuals

  • Gleicilaine A. S. Casseb
  • Gabriela Ambrósio
  • Ana Lúcia S. Rodrigues
  • Manuella P. Kaster
Original Article
  • 23 Downloads

Abstract

Growing evidence support the role of vitamin D in brain function and behavior. This study investigated the relationship between 25-hydroxyvitamin D3 [25(OH)D3] levels, biochemical profile and symptoms of depression and anxiety in healthy individuals. Symptoms of depression were assessed by the Beck Depression Inventory (BDI) and anxiety was evaluated with the State-Trait Anxiety Inventory (STAI). Our sample included 36 individuals, mostly women 27(75%), 36.39 ± 9.72 years old, non-smokers 31(86.1%), body mass index of 26.57 ± 3.92 kg/m2, 27.95 ± 7.50% body fat. Participants were divided into those with 25(OH)D3 levels lower than 40 ng/mL (mean 28.16 ± 7.07) and equal or higher than 40 ng/mL (mean 53.19 ± 6.32). Those with lower 25(OH)D3 had higher levels of triacylglycerol, triacylglycerol/high density lipoprotein (HDL) ratio, high glucose and homeostatic model assessment of insulin resistance (HOMA-IR) index. No changes were observed in sociodemographic variables, body composition, inflammatory parameters and cortisol. Additionally, in the groups with low and high 25(OH)D3 levels, STAI state, STAI trait and BDI scores were not statistically different. Levels of 25(OH)D3 were inversely and independently associated with glucose and HOMA-IR, but not associated with triacylglycerol, depression and anxiety scores. Lower levels of 25(OH)D3 were associated with dysfunction in glucose metabolism but not with depression and anxiety in healthy individuals.

Keywords

Anxiety Depression Glucose Lipid profile Vitamin D 

Abbreviations

[25(OH)D3]

25-hydroxyvitamin D3

[1,25(OH)2D3]

1,25-dihydroxyvitamin D3

BDI

Beck Depression Inventory

BMI

body mass index

CNS

central nervous system

CRP

C-reactive protein

ELISA

Enzyme-Linked Immunosorbent Assay

HOMA-B

homeostatic model assessment of beta cells function

HOMA-IR

homeostatic model assessment of insulin resistance

HDL

high density lipoprotein

LDL

low density lipoprotein

S.D.

standard deviation

STAI

State-Trait Anxiety Inventory

SPSS

Statistical Program for Social Sciences

Notes

Acknowledgements

This study was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior (CAPES). MPK and ALSR are CNPq Research Fellows.

Author contributions

M.P.K and A.L.R. were involved in the conception and design of the study and drafting of the manuscript; G.A. and G.A.S.C. were responsible for acquisition and analysis of data and drafting the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. Afzal S, Nordestgaard BG, Bojesen SE (2013) Plasma 25-hydroxyvitamin D and risk of non-melanoma and melanoma skin cancer: a prospective cohort study. J Invest Dermatol 133:629–636.  https://doi.org/10.1038/jid.2012.395 CrossRefPubMedGoogle Scholar
  2. Afzal S, Bojesen SE, Nordestgaard BG (2014) Reduced 25-hydroxyvitamin D and risk of Alzheimer's disease and vascular dementia. Alzheimers Dement 10:296–302.  https://doi.org/10.1016/j.jalz.2013.05.1765 CrossRefPubMedGoogle Scholar
  3. Altay H, Zorlu A, Kocum HT, Demircan S, Yilmaz N, Yilmaz MB (2012) Relationship between parathyroid hormone and depression in heart failure. Arq Bras Cardiol 99:915–923.  https://doi.org/10.1590/S0066-782X2012005000088 CrossRefPubMedGoogle Scholar
  4. Alvarez JA, Ashraf A (2010) Role of vitamin D in insulin secretion and insulin sensitivity for glucose homeostasis. Int J Endocrinol 2010:351385.  https://doi.org/10.1155/2010/351385 CrossRefPubMedGoogle Scholar
  5. Beck AT, Steer RA, Garbin MG (1988) Psychometric properties of the Beck depression inventory: 25 years of evaluation. Clin Psychol Rev 8:77–100.  https://doi.org/10.1016/0272-7358(88)90050-5 CrossRefGoogle Scholar
  6. Bertone-Johnson ER (2009) Vitamin D and the occurrence of depression: causal association or circumstantial evidence? Nutr Ver 67:481–492.  https://doi.org/10.1111/j.1753-4887.2009.00220.x CrossRefGoogle Scholar
  7. Biaggio AM, Natalício L, Spielberger CD (1977) Desenvolvimento da forma experimental em português do Inventário de Ansiedade Traço-Estado (IDATE) de Spielberger. Arq Bras Psic Apl 29:31–41Google Scholar
  8. Bikle DD (2014) Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol 21:319–329.  https://doi.org/10.1016/j.chembiol.2013.12.016 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bouillon R, Carmeliet G, Verlinden L, van Etten E, Verstuyf A, Luderer HF et al (2008) Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr Rev 29:726–776.  https://doi.org/10.1210/er.2008-0004 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Caprio M, Infante M, Calanchini M, Mammi C, Fabbri A (2017) Vitamin D: not just the bone. Evidence for beneficial pleiotropic extraskeletal effects. Eat Weight Disord 22:27–41.  https://doi.org/10.1007/s40519-016-0312-6 CrossRefPubMedGoogle Scholar
  11. Chabas JF, Stephan D, Marqueste T, Garcia S, Lavaut MN, Nguyen C, Legre R, Khrestchatisky M, Decherchi P, Feron F (2013) Cholecalciferol (vitamin D3) improves myelination and recovery after nerve injury. PLoS One 8:65034.  https://doi.org/10.1371/journal.pone.0065034 CrossRefGoogle Scholar
  12. Chaowen W, Wenwei R, Jianhua C et al (2016) Association between serum levels of vitamin D and the risk of post-stroke anxiety. Medicine 95:1–5.  https://doi.org/10.1097/MD.0000000000003566 CrossRefGoogle Scholar
  13. Christakos S, Dhawan P, Benn B et al (2007) Vitamin D: molecular mechanism of action. Ann N Y Acad Sci 1116:340–348.  https://doi.org/10.1196/annals.1402.070 CrossRefPubMedGoogle Scholar
  14. Dicou E (2009) Neurotrophins and neuronal migration in the developing rodent brain. Brain Res Rev 60:408–417.  https://doi.org/10.1016/j.brainresrev.2009.03.001 CrossRefPubMedGoogle Scholar
  15. Eelen G, Verlinden L, Van Camp M et al (2004) The effects of 1alpha, 25-dihydroxyvitamin D3 on the expression of DNA replication genes. J Bone Miner Res 19:133–146.  https://doi.org/10.1359/JBMR.0301204 CrossRefPubMedGoogle Scholar
  16. Endler NS, Kocovski NL (2001) State and trait anxiety revisited. J Anxiety Disord 15:231–245.  https://doi.org/10.1016/S0887-6185(01)00060-3 CrossRefPubMedGoogle Scholar
  17. Fedotova J, Pivina S, Sushko A (2017) Effects of chronic vitamin D3 hormone administration on anxiety-like behavior in adult female rats after long-term Ovariectomy. Nutrients 9:28.  https://doi.org/10.3390/nu9010028 CrossRefPubMedCentralGoogle Scholar
  18. Féron F, Burne TH, Brown J et al (2005) Developmental vitamin D3 deficiency alters the adult rat brain. Brain Res Bull 65:141–148.  https://doi.org/10.1016/j.brainresbull.2004.12.007 CrossRefPubMedGoogle Scholar
  19. Gorenstein C, Andrade L (1996) Validation of a Portuguese version of the Beck depression inventory and the StateTrait anxiety inventory in Brazilian subjects. Braz J Med Biol Res 29:453–457.  https://doi.org/10.1590/S0100-879X2005000300011 CrossRefPubMedGoogle Scholar
  20. Han B, Zhu FX, Yu HF, Liu S, Zhou JL (2018) Low serum levels of vitamin D are associated with anxiety in children and adolescents with dialysis. Sci Rep 8:5956.  https://doi.org/10.1038/s41598-018-24451-7 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hayes CE, Nashold FE, Spach KM, Pedersen LB (2003) The immunological functions of the vitamin D endocrine system. Cell Mol Biol 49:277–300PubMedGoogle Scholar
  22. Hoogendijk WJ, Lips P, Dik MG, Deeg DJ, Beekman AT, Penninx BW (2008) Depression is associated with decreased 25-hydroxyvitamin D and increased parathyroid hormone levels in older adults. Arch Gen Psychiatry 65:508–512.  https://doi.org/10.1001/archpsyc.65.5.508 CrossRefPubMedGoogle Scholar
  23. Hua F, Reiss JI, Tang H, Wang J, Fowler X, Sayeed I, Stein DG (2012) Progesterone and low-dose vitamin D hormone treatment enhances sparing of memory following traumatic brain injury. Horm Behav 61:642–651CrossRefGoogle Scholar
  24. Jean-Louis G, Zizi F, Luther TC, Brown CD, McFarlane SI (2008) Obstructive sleep apnea and cardiovascular disease: role of the metabolic syndrome and its components. J Clin Sleep Med 4:261–272PubMedPubMedCentralGoogle Scholar
  25. Jia F, Shan L, Wang B, Li H, Feng J, Xu Z, Saad K (2018) Fluctuations in clinical symptoms with changes in serum 25(OH) vitamin D levels in autistic children: three cases report. Nutr Neurosci 8:1–4.  https://doi.org/10.1080/1028415X.2018.1458421 CrossRefGoogle Scholar
  26. Jiang P, Zhang WY, Li HD, Cai HL, Xue Y (2013) Repeated haloperidol administration has no effect on vitamin D signaling but increase retinoid X receptors and Nur77 expression in rat prefrontal cortex. Cell Mol Neurobiol 33:309–312.  https://doi.org/10.1007/s10571-012-9902-7 CrossRefPubMedGoogle Scholar
  27. Jorde R, Grimnes G (2011) Vitamin D and metabolic health with special reference to the effect of vitamin D on serum lipids. Prog Lipid Res 50:303–312.  https://doi.org/10.1016/j.plipres.2011.05.001 CrossRefPubMedGoogle Scholar
  28. Jorde R, Waterloo K, Saleh FN, Haug E, Svartberg J (2006) Neuropsychological function in relation to serum parathyroid hormone and serum 25-hydroxyvitamin D levels - the Tromso study. J Neurol 253:464–470.  https://doi.org/10.1007/s00415-005-0027-5 CrossRefPubMedGoogle Scholar
  29. Jorde R, Sneve M, Figenschau Y, Svartberg J, Waterloo K (2008) Effects of vitamin D supplementation on symptoms of depression in overweight and obese subjects: randomized double blind trial. J Intern Med 264:599–609.  https://doi.org/10.1111/j.1365-2796.2008.02008.x CrossRefPubMedGoogle Scholar
  30. Kalueff AV, Lou YR, Ilkka L et al (2004) Increased anxiety in mice lacking vitamin D receptor gene. NeuroReport 15:1271–1274.  https://doi.org/10.1097/01.wnr.0000129370.04248.92 CrossRefPubMedGoogle Scholar
  31. Kampmann U, Mosekilde L, Juhl C, Moller N, Christensen B, Rejnmark L, Wamberg L, Orskov L (2014) Effects of 12 weeks high dose vitamin D3 treatment on insulin sensitivity, beta cell function and metabolic markers in patients with type 2 diabetes and vitamin D insufficiencya double-blind, randomized, placebo-controlled trial. Metabolism 63:1115–1124.  https://doi.org/10.1016/j.metabol.2014.06.008 CrossRefPubMedGoogle Scholar
  32. Kayaniyil S, Vieth R, Retnakaran R, Knight JA, Qi Y, Gerstein HC, Perkins BA, Harris SB, Zinman B, Hanley AJ (2010) Association of vitamin D with insulin resistance and beta-cell dysfunction in subjects at risk for type 2 diabetes. Diabetes Care 33:1379–1381.  https://doi.org/10.2337/dc09-2321 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Khoraminya N, Tehrani-Doost M, Jazayeri HA, Djazayery A (2012) Australian & therapeutic effects of vitamin D as adjunctive therapy to fluoxetine in patients with major depressive disorder. N Z J Psychiatry 47:271–275.  https://doi.org/10.1177/0004867412465022 CrossRefGoogle Scholar
  34. Kimball SM, Mirhosseini N, Rucklidge J (2018) Database analysis of depression and anxiety in a community sample - response to a micronutrient intervention. Nutrients 10:1–17.  https://doi.org/10.3390/nu10020152 CrossRefGoogle Scholar
  35. Maddaloni E, Cavallari I, Napoli N, Conte C (2018) Vitamin D and diabetes mellitus. Front Horm Res 50:161–176.  https://doi.org/10.1159/000486083 CrossRefPubMedGoogle Scholar
  36. Maestro B, Molero S, Bajo S, Davila N, Calle C (2002) Transcriptional activation of the human insulin receptor gene by 1, 25-dihydroxyvitamin D3. Cell Biochem Funct 20:227–232.  https://doi.org/10.1002/cbf.951 CrossRefPubMedGoogle Scholar
  37. Maki KC, Fulgoni VL, Keast DR, Rains TM (2012) Vitamin D intake and status are associated with lower prevalence of metabolic syndrome in U.S. adults: National Health and nutrition examination surveys 2003–2006. Metab Syndr Relat Disord 10:363–372.  https://doi.org/10.1089/met.2012.0020 CrossRefPubMedGoogle Scholar
  38. Manchanda P, Bid H (2012) Vitamin D receptor and type 2 diabetes mellitus: growing therapeutic opportunities. Indian J Hum Genet 18:274–275.  https://doi.org/10.4103/0971-6866.107975 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Martinez AP, de Azevedo GR (2012) The Bristol stool form scale: its translation to Portuguese, cultural adaptation and validation. Rev Lat Am Enfermagem 20:583–589.  https://doi.org/10.1590/S0104-11692012000300021 CrossRefPubMedGoogle Scholar
  40. Masuyama R (2014) Role of local vitamin D signaling and cellular calcium transport system in bone homeostasis. J Bone Miner Metab 32:1–9.  https://doi.org/10.1007/s00774-013-0508-z CrossRefPubMedGoogle Scholar
  41. Milaneschi Y, Hoogendijk W, Lips P, Heijboer AC, Schoevers R, van Hemert AM, Beekman ATF, Smit JH, Penninx BWJH (2014) The association between low vitamin D and depressive disorders. Mol Psychiatry 19:444–451.  https://doi.org/10.1038/mp.2013.36 CrossRefPubMedGoogle Scholar
  42. Minasyan A, Keisala T, Lou YR, Kalueff AV, Tuohimaa P (2007) Neophobia, sensory and cognitive functions, and hedonic responses in vitamin D receptor mutant mice. J Steroid Biochem Mol Biol 104:274–280.  https://doi.org/10.1016/j.jsbmb.2007.03.032 CrossRefPubMedGoogle Scholar
  43. Moritz B, Schwarzbold ML, Guarnieri R, Diaz AP, Rodrigues ALS, Dafre AL (2017) Effects of ascorbic acid on anxiety state and affect in a non-clinical sample. Acta Neurobiol Exp 77:362–372Google Scholar
  44. Nair R, Maseeh A (2012) Vitamin D: the “sunshine” vitamin. J Pharmacol Pharmacother 3:118–126.  https://doi.org/10.4103/0976-500X.95506 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Nikooyeh B, Neyestani TR, Farvid M, Alavi-Majd H, Houshiarrad A, Kalayi A, Shariatzadeh N, Gharavi A’, Heravifard S, Tayebinejad N, Salekzamani S, Zahedirad M (2011) Daily consumption of vitamin D- or vitamin D+ calcium fortified yogurt drink improved glycemic control in patients with type 2 diabetes: a randomized clinical trial. Am J Clin Nutr 93:764–771.  https://doi.org/10.3945/ajcn.110.007336 CrossRefPubMedGoogle Scholar
  46. Patrick PA, Visintainer PF, Shi Q, Weiss IA, Brand DA (2012) Vitamin D and retinopathy in adults with diabetes mellitus. Arch Ophthalmol 130:756–760.  https://doi.org/10.1001/archophthalmol.2011.2749 CrossRefPubMedGoogle Scholar
  47. Pittas AG, Stark PC, Harris SS, Dawson-Hughes B (2007) The effects of calcium and vitamin D supplementation on blood glucose and markers of inflammation in nondiabetic adults. Diabetes Care 30:980–986.  https://doi.org/10.2337/dc06-1994 CrossRefPubMedGoogle Scholar
  48. Reid IR (2004) Effects of calcium supplementation on circulating lipids. Drugs Aging 21:7–17CrossRefGoogle Scholar
  49. Reiss S (1997) Trait anxiety: It's not what you think it is. J Anxiety Disord 11:201–214.  https://doi.org/10.1016/S0887-6185(97)00006-6 CrossRefPubMedGoogle Scholar
  50. Ross AC, Manson JE, Abrams SA et al (2011) The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab 96:53–58.  https://doi.org/10.1210/jc.2010-2704 CrossRefPubMedGoogle Scholar
  51. Schöttker B, Haug U, Schomburg L, Köhrle J, Perna L, Müller H, Holleczek B, Brenner H (2013) Strong associations of 25-hydroxyvitamin D concentrations with all-cause, cardiovascular, cancer, and respiratory disease mortality in a large cohort study. Am J Clin Nutr 97:782–793.  https://doi.org/10.3945/ajcn.112.047712 CrossRefPubMedGoogle Scholar
  52. Sergeev IN, Rhoten WB (1995) 1,25-Dihydroxyvitamin D3 evokes oscillations of intracellular calcium in a pancreatic beta-cell line. Endocrinology 136:2852–2861.  https://doi.org/10.1210/endo.136.7.7789310 CrossRefPubMedGoogle Scholar
  53. Shaffer JA, Edmondson D, Wasson LT, Falzon L, Homma K, Ezeokoli N, Li P, Davidson KW (2014) Vitamin D supplementation for depressive symptoms: a systematic review and meta-analysis of randomized controlled trials. Psychosom Med 76:190–196.  https://doi.org/10.1097/PSY.0000000000000044 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Sheline YI, Barch DM, Garcia K (2006) Cognitive function in late life depression: relationships to depression severity, cerebrovascular risk factors and processing speed. Biol Psychiatry 60:58–65.  https://doi.org/10.1016/j.biopsych.2005.09.019 CrossRefPubMedGoogle Scholar
  55. Song Y, Wang L, Pittas AG, del Gobbo LC, Zhang C, Manson JE, Hu FB (2013) Blood 25-hydroxy vitamin D levels and incident type 2 diabetes: a meta-analysis of prospective studies. Diabetes Care 36:1422–1428.  https://doi.org/10.2337/dc12-0962 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Spielberger CD, Gorsuch RL, Lushene RE (1970) Manual for the state-trait anxiety inventory. Consulting Psychologists Press, Palo AltoGoogle Scholar
  57. Sung CC, Liao MT, Lu KC, Wu CC (2012) Role of vitamin D in insulin resistance. J Biomed Biotechnol 2012:634195–634111.  https://doi.org/10.1155/2012/634195 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Tang H, Hua F, Wang J, Sayeed I, Wang X, Chen Z, Yousuf S, Atif F, Stein DG (2013) Progesterone and vitamin D: improvement after traumatic brain injury in middle-aged rats. Horm Behav 64:527–538.  https://doi.org/10.1016/j.yhbeh.2013.06.009 CrossRefPubMedGoogle Scholar
  59. Tang H, Hua F, Wang J, Yousuf S, Atif F, Sayeed I, Stein DG (2015) Progesterone and vitamin D combination therapy modulates inflammatory response after traumatic brain injury. Brain Inj 17:1–10.  https://doi.org/10.3109/02699052.2015.1035330 CrossRefGoogle Scholar
  60. Tsur A, Feldman BS, Feldhammer I, Hoshen MB, Leibowitz G, Balicer RD (2013) Decreased serum concentrations of 25-hydroxycholecalciferol are associated with increased risk of progression to impaired fasting glucose and diabetes. Diabetes Care 36(5):1361-7.  https://doi.org/10.2337/dc12-1050.
  61. Upadhyay RK (2014) Transendothelial transport and its role in therapeutics. Int Sch Res Notices 27:1–39.  https://doi.org/10.1155/2014/309404 CrossRefGoogle Scholar
  62. Vacek JL, Vanga SR, Good M, Lai SM, Lakkireddy D, Howard PA (2012) Vitamin D deficiency and supplementation and relation to cardiovascular health. Am J Cardiol 109:359–363.  https://doi.org/10.1016/j.amjcard.2011.09.020 CrossRefPubMedGoogle Scholar
  63. Van Belle TL, Gysemans C, Mathieu C (2013) Vitamin D and diabetes: the odd couple. Trends Endocrinol Metab 24(11):561–568.  https://doi.org/10.1016/j.tem.2013.07.002 CrossRefPubMedGoogle Scholar
  64. Wang TJ, Pencina MJ, Booth SL, Jacques PF, Ingelsson E, Lanier K, Benjamin EJ, D’Agostino RB, Wolf M, Vasan RS (2008) Vitamin D deficiency and Risc of cardiovascular disease. Circulation 117, 503-511-controlled trial. Metabolism 63:1115–1124.  https://doi.org/10.1161/CIRCULATIONAHA.107.706127 CrossRefGoogle Scholar
  65. Wang H, Xia NY, Peng DQ (2012) Influence of vitamin D supplementation on plasma lipid profiles: a meta-analysis of randomized controlled trials. Lipids Health Dis 11:42.  https://doi.org/10.1186/1476-511X-11-42 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Williams JA, Romero VC, Clinton CM, Vazquez DM, Marcus SM, Chilimigras JL, Hamilton SE, Allbaugh LJ, Vahratian AM, Schrader RM, Mozurkewich EL (2016) Vitamin D levels and perinatal depressive symptoms in women at risk: a secondary analysis of the mothers, omega-3, and mental health study. BMC Pregnancy Childbirth 16:203.  https://doi.org/10.1186/s12884-016-0988-7 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Wong KE, Szeto F, Zhang W et al (2009) Involvement of the vitamin D receptor in energy metabolism: regulation of uncoupling proteins. Am J Physiol Endocrinol Metab 296:820–828.  https://doi.org/10.1152/ajpendo.90763.200 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of BiochemistryFederal University of Santa CatarinaFlorianópolisBrazil

Personalised recommendations