Advertisement

Behavioral and electrophysiological brain effects of aspartame on well-nourished and malnourished rats

  • Paula Catirina Germano Magalhães
  • Ricardo Abadie-Guedes
  • Manoel Augusto Barbosa da Costa Mendonça
  • Aline Duarte de Souza
  • Rubem Carlos Araújo GuedesEmail author
Original Article
  • 32 Downloads

Abstract

The non-caloric sweetener aspartame can be potentially harmful to the developing brain, as some studies suggest an association between aspartame intake and adverse neural effects. This study aimed to evaluate the possible effects of aspartame, with or without associated early nutritional deficiency, on behavioral parameters suggestive of anxiety and electrophysiological features of the excitability-related phenomenon known as cortical spreading depression (CSD). Newborn Wistar rats (n = 80) were suckled under favorable (L9; n = 40) or unfavorable lactation conditions (L15; n = 40), consisting of litters with 9 or 15 pups, respectively. In each lactation condition, animals were divided into 4 groups that received per gavage, from postnatal day 8 to 28, 75 mg/kg/d or 125 mg/kg/d aspartame (groups ASP75 and ASP125), or water (vehicle group), or no treatment (naive group). Behavioral tests (elevated plus-maze [EPM]) were performed at postnatal days 86–95 and CSD was recorded between postnatal days 96–115. Compared to the control groups, aspartame dose-dependently reduced body weight, suggesting a negative impact on animal development; aspartame also caused behavioral changes suggestive of anxiety (shorter stay in the open arms in the EPM) and decelerated CSD (lower propagation speed). Some of these parameters were more affected in L15 animals, suggesting an interaction among aspartame and lactation condition. We concluded that early consumption of aspartame adversely affects development of the organism (weight loss), with actions on behavioral (anxiety-like) and cerebral electrophysiological (CSD) parameters. The data suggest caution in aspartame consumption by lactating mothers and their infants.

Keywords

Aspartame Anxiety Brain excitability Lactation conditions Nervous system Spreading depression 

Notes

Acknowledgements

The authors thank the financial support from: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq no. 445101/2014-8), INCT de Excitoxicidade e Neuroproteção (465671/2014-4) and Capes, Finance code 001, (Edital 043/2013 Ciências Do Mar II and BEX 2036/15-0). RCA Guedes is a research fellow from CNPq (No. 303636/2014-9).

References

  1. Abdel-Salam OME, Salem NA, El-Shamarka MES, Hussein JS, Ahmed NAS, El-Nagar MES (2012) Studies on the effects of aspartame on memory and oxidative stress in brain of mice. Eur Rev Med Pharmacol Sci 16:2092–2101PubMedGoogle Scholar
  2. Abhilash M, Alex M, Mathews VV, Nair RH (2014) Chronic effect of aspartame on ionic homeostasis and monoamine neurotransmitters in the rat brain. Int J Toxicol 33:332–341CrossRefGoogle Scholar
  3. Alkafafy MS, Ibrahim ZS, Ahmed MM, El-Shazly SA (2015) Impact of aspartame and saccharin on the rat liver: biochemical, molecular, and histological approach. Int J Immunopathol Pharmacol 28:247–255CrossRefGoogle Scholar
  4. Amaral APB, Barbosa MSS, Souza VC, Ramos ILT, Guedes RCA (2009) Drug/nutrition interaction in the developing brain: dipyrone enhances spreading depression in rats. Exp Neurol 219:492–498CrossRefGoogle Scholar
  5. Ashok I, Sheeladevi R (2014) Biochemical responses and mitochondrial mediated activation of apoptosis on long-term effect of aspartame in rat brain. Redox Biol 2:820-831Google Scholar
  6. Ashok I, Wankhar D, Wankhar W, Sheeladevi R (2015) Neurobehavioral changes and activation of neurodegenerative apoptosis on long-term consumption of aspartame in the rat brain. J Nutr Intermed Metabol 2:76–85CrossRefGoogle Scholar
  7. Aspartame Information Center (2005) Products. Available in: http://www.aspartame.org/aspartame_products.html. Accessed 19 Feb 2018
  8. Beck B, Burlet A, Max J-P, Stricker-Krongrad A (2002) Effects of long-term ingestion of aspartame on hypothalamic neuropeptide Y, plasma leptin and body weight gain and composition. Physiol Behav 75:41–47CrossRefGoogle Scholar
  9. Bergstrom BP, Cummings DR, Skaggs TA (2007) Aspartame decreases evoked extracellular dopamine levels in the rat brain: an in vivo voltammetry study. Neuropharmacology 53:967–974CrossRefGoogle Scholar
  10. Borkum JM (2016) Migraine triggers and oxidative stress: a narrative review and synthesis. Headache 56:12–35CrossRefGoogle Scholar
  11. Camfield PR, Camfield CS, Dooley JM, Gordon K, Jollymore S, Weaver DF (1992) Aspartame exacerbates EEG spike-wave discharge in children with generalized absence epilepsy. Neurology 42:1000–1003CrossRefGoogle Scholar
  12. Charles AC, Baca SM (2013) Cortical spreading depression and migraine. Nat Rev Neurol 9:637–644CrossRefGoogle Scholar
  13. Chen S-P, Ayata C (2016) Spreading depression in primary and secondary headache disorders. Curr Pain Headache Rep 20:44.  https://doi.org/10.1007/s11916-016-0574-8 CrossRefPubMedGoogle Scholar
  14. Christian B, Mcconnaughey K, Bethea E, Brantley S, Coffey A, Hammond L, Harrell S, Metcalf K, Muehlenbein D, Spruill W, Brinson L, Mcconnaughey M (2004) Chronic aspartame affects T-maze performance, brain cholinergic receptors and Na+, K+-ATPase in rats. Pharmacol Biochem Behav 78:121–127CrossRefGoogle Scholar
  15. Collison KS, Inglis A, Shibin S, Andres B, Ubungen R, Thiam J, Mata P, Al-Mohanna FA (2016) Differential effects of early-life NMDA receptor antagonism on aspartame-impaired insulin tolerance and behavior. Physiol Behav 167:209–221CrossRefGoogle Scholar
  16. Drake ME (1986) Panic attacks and excessive aspartame ingestion. Lancet 328:631.  https://doi.org/10.1016/S0140-6736(86)92456-6 CrossRefGoogle Scholar
  17. Fabricius M, Fuhr S, Willumsen L, Dreier JP, Bhatia R, Boutelle MG, Hartings JA, Bullock R, Strong AJ, Lauritzen M (2008) Association of seizures with cortical spreading depression and periinfarct depolarisations in the acutely injured human brain. Clin Neurophysiol 119:1973–1984CrossRefGoogle Scholar
  18. Fernstrom JD (1989) Oral aspartame and plasma phenylalanine: pharmacokinetic difference between rodents and man, and relevance to CNS effects of phenylalanine. Short note. J Neural Transm 75:159-64Google Scholar
  19. Francisco ES, Guedes RCA (2015) Neonatal taurine and alanine modulate anxiety-like behavior and decelerate cortical spreading depression in rats previously suckled under different litter sizes. Amino Acids 47:2437–2445CrossRefGoogle Scholar
  20. Guedes RCA (2011) Cortical spreading depression: a model for studying brain consequences of malnutrition. In: Preedy VR, Watson RR, Martin CR (eds) Handbook of behavior, food and nutrition. Springer, London, pp 2343–2355.  https://doi.org/10.1007/978-0-387-92271-3_148 CrossRefGoogle Scholar
  21. Guedes RCA, Cabral-Filho JE, Teodósio NR (1992) GABAergic mechanisms involved in cortical spreading depression in normal and malnourished rats. In: Do Carmo RJ (ed) Spreading depression. Springer, Berlin, Experimental Brain Research Series 23:17–26Google Scholar
  22. Hernándéz-Cáceres J, Macias-González R, Brozek G, Bures J (1987) Systemic ketamine blocks cortical spreading depression but does not delay the onset of terminal anoxic depolarization in rats. Brain Res 437:360–364CrossRefGoogle Scholar
  23. Humphries P, Pretorius E, Naude H (2008) Direct and indirect cellular effects of aspartame on the brain. Eur J Clin Nutr 62:451–462CrossRefGoogle Scholar
  24. Iyyaswamy A, Rathinasamy S (2012) Effect of chronic exposure to aspartame on oxidative stress in the brain of albino rats. J Biosci 37:679–688Google Scholar
  25. Largo C, Ibarz JM, Herreras O (1997) Effects of the gliotoxin fluorocitrate on spreading depression and glial membrane potential in rat brain in situ. J Neurophysiol 78:295–307CrossRefGoogle Scholar
  26. Leão AAP (1944) Spreading depression of activity in the cerebral cortex. J Neurophysiol 7:359–390CrossRefGoogle Scholar
  27. Li S-X, Fujita Y, Zhang J-C, Rena Q, Ishima T, Wu J, Hashimoto K (2014) Role of the NMDA receptor in cognitive deficits, anxiety and depressive-like behavior in juvenile and adult mice after neonatal dexamethasone exposure. Neurobiol Dis 62:124–134CrossRefGoogle Scholar
  28. Mazel T, Richter F, Vargová L, Syková E (2002) Changes in extracellular space volume and geometry induced by cortical spreading depression in immature and adult rats. Physiol Res 51(Suppl 1):85–93Google Scholar
  29. Mendes-da-Silva RF, Cunha-Lopes AA, Bandim-da-Silva ME, Cavalcanti GA, Rodrigues ARO, Andrade-da-Costa BLS, Guedes RCA (2014) Prooxidant versus antioxidant brain action of ascorbic acid in well-nourished and malnourished rats as a function of dose: a cortical spreading depression and malondialdehyde analysis. Neuropharmacology 86:155–160CrossRefGoogle Scholar
  30. Merkler D, Klinker F, Jürgens T, Glaser R, Paulus W, Brinkmann BG, Sereda MW, Stadelmann-Nessler C, Guedes RCA, Brück W, Liebetanz D (2009) Propagation of spreading depression inversely correlates with cortical myelin content. Ann Neurol 66:355–365CrossRefGoogle Scholar
  31. Morgane PJ, Austin-laFrance R, Bronzino J, Tonkiss J, Diaz-Cintra S, Kemper T, Galler JR (1993) Prenatal malnutrition and development of the brain. Neurosci Biobehav Rev 17:91–128CrossRefGoogle Scholar
  32. Newman LC, Lipton RB (2001) Migraine MLT-down: an unusual presentation of migraine in patients with aspartame-triggered headaches. Headache 41:899–901CrossRefGoogle Scholar
  33. Oyama Y, Sakai H, Arata T, Okano Y, Akaike N, Sakai K, Noda K (2002) Cytotoxic effects of methanol, formaldehyde, and formate on dissociated rat thymocytes: a possibility of aspartame toxicity. Cell Biol Toxicol 18:43–50CrossRefGoogle Scholar
  34. Potts WJ, Bloss JL, Nutting EF (1980) Biological properties of aspartame: I. evaluation of central nervous system effects. J Environ Pathol Toxicol 3:341–353PubMedGoogle Scholar
  35. Rocha-de-Melo AP, Cavalcanti JB, Barros AS, Guedes RCA (2006) Manipulation of rat litter size during suckling influences cortical spreading depression after weaning and at adulthood. Nutr Neurosci 9:155–160CrossRefGoogle Scholar
  36. Rycerz K, Jaworska-Adamu JE (2013) Effects of aspartame metabolites on astrocytes and neurons. Folia Neuropathol 51:10–17CrossRefGoogle Scholar
  37. Sanadgol N, Golab F, Askari H, Moradi F, Ajdary M, Mehdizadeh M (2018) Alpha-lipoic acid mitigates toxic-induced demyelination in the corpus callosum by lessening of oxidative stress and stimulation of polydendrocytes proliferation. Metab Brain Dis 33:27–37CrossRefGoogle Scholar
  38. Sanberg PR, Newman MB, Manresa JJ, Potts SE, Alvarez F, Cahill DW, Shytle RD (2001) Mecamylamine effects on haloperidol-induced catalepsy and defecation. Int J Neurosci 109:81–90CrossRefGoogle Scholar
  39. Simintzi I, Schulpis KH, Angelogianni P, Liapi C, Tsakiris S (2007) The effect of aspartame metabolites on the suckling rat frontal cortex acetylcholinesterase. An in vitro study. Food Chem Toxicol 45:2397–2401CrossRefGoogle Scholar
  40. Simintzi I, Schulpis KH, Angelogianni P, Liapi C, Tsakiris S (2008) L-Cysteine and glutathione restore the modulation of rat frontal cortex Na+, K+-ATPase activity induced by aspartame metabolites. Food Chem Toxicol 46:2074–2079CrossRefGoogle Scholar
  41. Vences-Mejía A, Labra-Ruíz N, Hernández-Martínez N, Dorado-González V, Gómez-Garduño J, Pérez-López I, Nosti-Palacios R, Camacho Carranza R, Espinosa-Aguirre JJ (2006) The effect of aspartame on rat brain xenobiotic-metabolizing enzymes. Hum Exp Toxicol 25:453–459CrossRefGoogle Scholar
  42. von Poser Toigo E, Huffell AP, Mota CS, Bertolini D, Pettenuzzo LF, Dalmaz C (2015) Metabolic and feeding behavior alterations provoked by prenatal exposure to aspartame. Appetite 87:168–174CrossRefGoogle Scholar
  43. Wall PM, Messier C (2001) Methodological and conceptual issues in the use of the elevated plus-maze as a psychological measurement instrument of animal anxiety-like behavior. Neurosci Biobehav Rev 25:275–286CrossRefGoogle Scholar
  44. Zhao TT, Shin KS, Park HJ, Yi BR, Lee KE, Lee MK (2017) Effects of (−)-Sesamin on chronic stress-induced anxiety disorders in mice. Neurochem Res 42:1123–1129.  https://doi.org/10.1007/s11064-016-2146-z CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Paula Catirina Germano Magalhães
    • 1
  • Ricardo Abadie-Guedes
    • 2
  • Manoel Augusto Barbosa da Costa Mendonça
    • 1
  • Aline Duarte de Souza
    • 1
  • Rubem Carlos Araújo Guedes
    • 1
    Email author return OK on get
  1. 1.Departamento de NutriçãoUniversidade Federal de PernambucoRecifeBrazil
  2. 2.Departamento de Fisiologia e FarmacologiaUniversidade Federal de PernambucoRecifeBrazil

Personalised recommendations