Berberine ameliorates lipopolysaccharide-induced learning and memory deficit in the rat: insights into underlying molecular mechanisms
- 79 Downloads
Abstract
Systemic lipopolysaccharide (LPS) triggers neuroinflammation with consequent development of behavioral and cognitive deficits. Neuroinflammation plays a crucial role in the pathogenesis of neurodegenerative disorders including Alzheimer’s disease (AD). Berberine is an isoquinoline alkaloid in Berberis genus with antioxidant and anti-inflammatory property and protective effects in neurodegenerative disorders. In this research, beneficial effect of this alkaloid against LPS-induced cognitive decline was assessed in the adult male rats. LPS was intraperitoneally administered at a dose of 1 mg/kg to induce neuroinflammation and berberine was given via gavage at doses of 10 or 50 mg/kg, one h after LPS, for 7 days. Treatment of LPS group with berberine at a dose of 50 mg/kg (but not at a dose of 10 mg/kg) improved spatial recognition memory in Y maze, performance in novel object recognition task (NORT), and prevented learning and memory dysfunction in passive avoidance tasks. Furthermore, berberine lowered hippocampal activity of acetylcholinesterase (AChE), malondialdehyde (MDA), protein carbonyl, activity of caspase 3, and DNA fragmentation and improved antioxidant capacity through enhancing glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase, and glutathione (GSH). Besides, berberine attenuated inflammation-related indices, as was evident by lower levels of nuclear factor-kappa B (NF-κB), toll-like receptor 4 (TLR4), tumor necrosis factor α (TNFα), and interleukin 6 (IL-6). Berberine also appropriately restored hippocampal 3-nitrotyrosine (3-NT), cyclooxygenase 2 (Cox 2), glial fibrillary acidic protein (GFAP), sirtuin 1, and mitogen-activated protein kinase (p38 MAPK) with no significant alteration of brain-derived neurotrophic factor (BDNF). In summary, berberine could partially ameliorate LPS-induced cognitive deficits via partial suppression of apoptotic cascade, neuroinflammation, oxido-nitrosative stress, AChE, MAPK, and restoration of sirtuin 1.
Keywords
Berberine Lipopolysaccharide Learning and memory Apoptosis Oxidative stress NeuroinflammationAbbreviations
- 3-NT
3-nitrotyrosine
- AChE
acetylcholinesterase
- AD
Alzheimer’s disease
- BDNF
brain-derived neurotrophic factor
- Cox 2
cyclooxygenase 2
- GFAP
glial fibrillary acidic protein
- GSH
glutathione
- GPx
glutathione peroxidase
- IL-6
interleukin 6
- LPS
lipopolysaccharide
- MDA
malondialdehyde
- MAPK
mitogen-activated protein kinase
- NF-κB
nuclear factor-kappa B
- NORT
novel object recognition task
- RNS
reactive nitrogen species
- ROS
reactive oxygen species
- Sirt 1
sirtuin 1
- SOD
superoxide dismutase
- TLR4
toll-like receptor 4
- TNFα
tumor necrosis factor α
Notes
Acknowledgements
This research project was the result of MD thesis project (Sepideh Sadraie), approved and financially supported in part by Shahed University in 2016.
Compliance with ethical standards
Conflict of interest
The authors declare that they have no competing interests.
References
- Abdel Moneim AE (2015) The neuroprotective effect of berberine in mercury-induced neurotoxicity in rats. Metab Brain Dis 30:935–942. https://doi.org/10.1007/s11011-015-9652-6 CrossRefPubMedGoogle Scholar
- Abdel-Salam OM, Omara EA, Mohammed NA, Youness ER, Khadrawy YA, Sleem AA (2013) Cerebrolysin attenuates cerebral and hepatic injury due to lipopolysaccharide in rats. Drug Discov Ther 7:261–271CrossRefGoogle Scholar
- Ahshin-Majd S, Zamani S, Kiamari T, Kiasalari Z, Baluchnejadmojarad T, Roghani M (2016) Carnosine ameliorates cognitive deficits in streptozotocin-induced diabetic rats: possible involved mechanisms. Peptides 86:102–111. https://doi.org/10.1016/j.peptides.2016.10.008 CrossRefPubMedGoogle Scholar
- Al-Amin MM, Choudhury MFR, Chowdhury AS, Chowdhury TR, Jain P, Kazi M, Alkholief M, Alshehri SM, Reza HM (2018) Pretreatment with risperidone ameliorates systemic LPS-induced oxidative stress in the cortex and Hippocampus. Front Neurosci 12:384. https://doi.org/10.3389/fnins.2018.00384 CrossRefPubMedPubMedCentralGoogle Scholar
- Ali MR, Abo-Youssef AM, Messiha BA, Khattab MM (2016) Tempol and perindopril protect against lipopolysaccharide-induced cognition impairment and amyloidogenesis by modulating brain-derived neurotropic factor, neuroinflammation and oxido-nitrosative stress. Naunyn Schmiedeberg's Arch Pharmacol 389:637–656. https://doi.org/10.1007/s00210-016-1234-6 CrossRefGoogle Scholar
- Andrade VS, Rojas DB, de Andrade RB, Kim TDH, Vizuete AF, Zanatta A, Wajner M, Goncalves CS, Wannmacher CMD (2017) A possible anti-inflammatory effect of proline in the brain cortex and cerebellum of rats. Mol Neurobiol. https://doi.org/10.1007/s12035-017-0626-z
- Antunes M, Biala G (2012) The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn Process 13:93–110. https://doi.org/10.1007/s10339-011-0430-z CrossRefPubMedGoogle Scholar
- Aski ML, Rezvani ME, Khaksari M, Hafizi Z, Pirmoradi Z, Niknazar S, Mehrjerdi FZ (2018) Neuroprotective effect of berberine chloride on cognitive impairment and hippocampal damage in experimental model of vascular dementia. Iran J Basic Med Sci 21:53–58. https://doi.org/10.22038/ijbms.2017.23195.5865 CrossRefPubMedPubMedCentralGoogle Scholar
- Baluchnejadmojarad T, Kiasalari Z, Afshin-Majd S, Ghasemi Z, Roghani M (2017) S-allyl cysteine ameliorates cognitive deficits in streptozotocin-diabetic rats via suppression of oxidative stress, inflammation, and acetylcholinesterase. Eur J Pharmacol 794:69–76. https://doi.org/10.1016/j.ejphar.2016.11.033 CrossRefPubMedGoogle Scholar
- Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
- Carvalho FB, Gutierres JM, Bueno A, Agostinho P, Zago AM, Vieira J, Fruhauf P, Cechella JL, Nogueira CW, Oliveira SM, Rizzi C, Spanevello RM, Duarte MM, Duarte T, Dellagostin OA, Andrade CM (2016) Anthocyanins control neuroinflammation and consequent memory dysfunction in mice exposed to lipopolysaccharide. Mol Neurobiol. https://doi.org/10.1007/s12035-016-9900-8
- Cayero-Otero MD, Espinosa-Oliva AM, Herrera AJ, Garcia-Dominguez I, Fernandez-Arevalo M, Martin-Banderas L, de Pablos RM (2018) Potential use of nanomedicine for the anti-inflammatory treatment of neurodegenerative diseases. Curr Pharm Des. https://doi.org/10.2174/1381612824666180403113015
- Chowdhury AA, Gawali NB, Munshi R, Juvekar AR (2017) Trigonelline insulates against oxidative stress, proinflammatory cytokines and restores BDNF levels in lipopolysaccharide induced cognitive impairment in adult mice. Metab Brain Dis. https://doi.org/10.1007/s11011-017-0147-5
- Claiborne A (1985) Catalase activity. In: CRC Handbook of Methods for Oxygen Radical Research, edited by Greenwald RA. Boca Raton, FL: CRC.: 283–284Google Scholar
- Czerniawski J, Miyashita T, Lewandowski G, Guzowski JF (2015) Systemic lipopolysaccharide administration impairs retrieval of context-object discrimination, but not spatial, memory: evidence for selective disruption of specific hippocampus-dependent memory functions during acute neuroinflammation. Brain Behav Immun 44:159–166. https://doi.org/10.1016/j.bbi.2014.09.014 CrossRefPubMedGoogle Scholar
- Domitrovic R, Cvijanovic O, Pernjak-Pugel E, Skoda M, Mikelic L, Crncevic-Orlic Z (2013) Berberine exerts nephroprotective effect against cisplatin-induced kidney damage through inhibition of oxidative/nitrosative stress, inflammation, autophagy and apoptosis. Food Chem Toxicol 62:397–406. https://doi.org/10.1016/j.fct.2013.09.003 CrossRefPubMedGoogle Scholar
- Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77CrossRefGoogle Scholar
- Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95CrossRefGoogle Scholar
- Fan LW, Kaizaki A, Tien LT, Pang Y, Tanaka S, Numazawa S, Bhatt AJ, Cai Z (2013) Celecoxib attenuates systemic lipopolysaccharide-induced brain inflammation and white matter injury in the neonatal rats. Neuroscience 240:27–38. https://doi.org/10.1016/j.neuroscience.2013.02.041 CrossRefPubMedPubMedCentralGoogle Scholar
- Fischer R, Maier O (2015) Interrelation of oxidative stress and inflammation in neurodegenerative disease: role of TNF. Oxidative Med Cell Longev 2015:610813–610818. https://doi.org/10.1155/2015/610813 CrossRefGoogle Scholar
- Fruhauf PK, Ineu RP, Tomazi L, Duarte T, Mello CF, Rubin MA (2015) Spermine reverses lipopolysaccharide-induced memory deficit in mice. J Neuroinflammation 12:3. https://doi.org/10.1186/s12974-014-0220-5 CrossRefPubMedPubMedCentralGoogle Scholar
- Gotz T, Gunther A, Witte OW, Brunkhorst FM, Seidel G, Hamzei F (2014) Long-term sequelae of severe sepsis: cognitive impairment and structural brain alterations - an MRI study (LossCog MRI). BMC Neurol 14:145. https://doi.org/10.1186/1471-2377-14-145 CrossRefPubMedPubMedCentralGoogle Scholar
- Gu SM, Park MH, Hwang CJ, Song HS, Lee US, Han SB, Oh KW, Ham YW, Song MJ, Son DJ, Hong JT (2015) Bee venom ameliorates lipopolysaccharide-induced memory loss by preventing NF-kappaB pathway. J Neuroinflammation 12:124. https://doi.org/10.1186/s12974-015-0344-2 CrossRefPubMedPubMedCentralGoogle Scholar
- Haba R, Shintani N, Onaka Y, Wang H, Takenaga R, Hayata A, Baba A, Hashimoto H (2012) Lipopolysaccharide affects exploratory behaviors toward novel objects by impairing cognition and/or motivation in mice: possible role of activation of the central amygdala. Behav Brain Res 228:423–431. https://doi.org/10.1016/j.bbr.2011.12.027 CrossRefPubMedGoogle Scholar
- Henry CJ, Huang Y, Wynne A, Hanke M, Himler J, Bailey MT, Sheridan JF, Godbout JP (2008) Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia. J Neuroinflammation 5:15. https://doi.org/10.1186/1742-2094-5-15 CrossRefPubMedPubMedCentralGoogle Scholar
- Huang SX, Qiu G, Cheng FR, Pei Z, Yang Z, Deng XH, Zhu JH, Chen L, Chen CC, Lin WF, Liu Y, Liu Z, Zhu FQ (2018) Berberine protects secondary injury in mice with traumatic brain injury through anti-oxidative and anti-inflammatory modulation. Neurochem Res 43:1814–1825. https://doi.org/10.1007/s11064-018-2597-5 CrossRefPubMedGoogle Scholar
- Hussien HM, Abd-Elmegied A, Ghareeb DA, Hafez HS, Ahmed HEA, El-Moneam NA (2018) Neuroprotective effect of berberine against environmental heavy metals-induced neurotoxicity and Alzheimer's-like disease in rats. Food Chem Toxicol 111:432–444. https://doi.org/10.1016/j.fct.2017.11.025 CrossRefPubMedGoogle Scholar
- Islam MT (2017) Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol Res 39:73–82. https://doi.org/10.1080/01616412.2016.1251711 CrossRefPubMedGoogle Scholar
- Jangra A, Sriram CS, Lahkar M (2016) Lipopolysaccharide-induced behavioral alterations are alleviated by sodium Phenylbutyrate via attenuation of oxidative stress and Neuroinflammatory Cascade. Inflammation 39:1441–1452. https://doi.org/10.1007/s10753-016-0376-5 CrossRefPubMedGoogle Scholar
- Jiang W, Li S, Li X (2015) Therapeutic potential of berberine against neurodegenerative diseases. Sci China Life Sci 58:564–569. https://doi.org/10.1007/s11427-015-4829-0 CrossRefPubMedPubMedCentralGoogle Scholar
- Khajevand-Khazaei MR, Ziaee P, Motevalizadeh SA, Rohani M, Afshin-Majd S, Baluchnejadmojarad T, Roghani M (2018) Naringenin ameliorates learning and memory impairment following systemic lipopolysaccharide challenge in the rat. Eur J Pharmacol 826:114–122. https://doi.org/10.1016/j.ejphar.2018.03.001 CrossRefPubMedGoogle Scholar
- Kim M, Cho KH, Shin MS, Lee JM, Cho HS, Kim CJ, Shin DH, Yang HJ (2014) Berberine prevents nigrostriatal dopaminergic neuronal loss and suppresses hippocampal apoptosis in mice with Parkinson's disease. Int J Mol Med 33:870–878. https://doi.org/10.3892/ijmm.2014.1656 CrossRefPubMedGoogle Scholar
- Leal G, Bramham CR, Duarte CB (2017) BDNF and hippocampal synaptic plasticity. Vitam Horm 104:153–195. https://doi.org/10.1016/bs.vh.2016.10.004 CrossRefPubMedGoogle Scholar
- Lee YY, Park JS, Jung JS, Kim DH, Kim HS (2013) Anti-inflammatory effect of ginsenoside Rg5 in lipopolysaccharide-stimulated BV2 microglial cells. Int J Mol Sci 14:9820–9833. https://doi.org/10.3390/ijms14059820 CrossRefPubMedPubMedCentralGoogle Scholar
- Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478CrossRefGoogle Scholar
- Li M, Li C, Yu H, Cai X, Shen X, Sun X, Wang J, Zhang Y, Wang C (2017) Lentivirus-mediated interleukin-1beta (IL-1beta) knock-down in the hippocampus alleviates lipopolysaccharide (LPS)-induced memory deficits and anxiety- and depression-like behaviors in mice. J Neuroinflammation 14:190. https://doi.org/10.1186/s12974-017-0964-9 CrossRefPubMedPubMedCentralGoogle Scholar
- Lin Y, Sheng M, Weng Y, Xu R, Lu N, Du H, Yu W (2017) Berberine protects against ischemia/reperfusion injury after orthotopic liver transplantation via activating Sirt1/FoxO3alpha induced autophagy. Biochem Biophys Res Commun 483:885–891. https://doi.org/10.1016/j.bbrc.2017.01.028 CrossRefPubMedGoogle Scholar
- Liu L, Zhang Q, Cai Y, Sun D, He X, Wang L, Yu D, Li X, Xiong X, Xu H, Yang Q, Fan X (2016) Resveratrol counteracts lipopolysaccharide-induced depressive-like behaviors via enhanced hippocampal neurogenesis. Oncotarget 7:56045–56059. https://doi.org/10.18632/oncotarget.11178 CrossRefPubMedPubMedCentralGoogle Scholar
- Lykhmus O, Mishra N, Koval L, Kalashnyk O, Gergalova G, Uspenska K, Komisarenko S, Soreq H, Skok M (2016) Molecular mechanisms regulating LPS-induced inflammation in the brain. Front Mol Neurosci 9:19. https://doi.org/10.3389/fnmol.2016.00019 CrossRefPubMedPubMedCentralGoogle Scholar
- Lykhmus O, Uspenska K, Koval L, Lytovchenko D, Voytenko L, Horid'ko T, Kosiakova H, Gula N, Komisarenko S, Skok M (2017) N-Stearoylethanolamine protects the brain and improves memory of mice treated with lipopolysaccharide or immunized with the extracellular domain of alpha7 nicotinic acetylcholine receptor. Int Immunopharmacol 52:290–296. https://doi.org/10.1016/j.intimp.2017.09.023 CrossRefPubMedGoogle Scholar
- Maleki SN, Aboutaleb N, Souri F (2018) Berberine confers neuroprotection in coping with focal cerebral ischemia by targeting inflammatory cytokines. J Chem Neuroanat 87:54–59. https://doi.org/10.1016/j.jchemneu.2017.04.008 CrossRefPubMedPubMedCentralGoogle Scholar
- Mayer AM (1998) Therapeutic implications of microglia activation by lipopolysaccharide and reactive oxygen species generation in septic shock and central nervous system pathologies: a review. Medicina (Buenos Aires) 58:377–385Google Scholar
- Mirahmadi SM, Shahmohammadi A, Rousta AM, Azadi MR, Fahanik-Babaei J, Baluchnejadmojarad T, Roghani M (2018) Soy isoflavone genistein attenuates lipopolysaccharide-induced cognitive impairments in the rat via exerting anti-oxidative and anti-inflammatory effects. Cytokine 104:151–159. https://doi.org/10.1016/j.cyto.2017.10.008 CrossRefPubMedGoogle Scholar
- Moghaddam HK, Baluchnejadmojarad T, Roghani M, Khaksari M, Norouzi P, Ahooie M, Mahboobi F (2014) Berberine ameliorate oxidative stress and astrogliosis in the hippocampus of STZ-induced diabetic rats. Mol Neurobiol 49:820–826. https://doi.org/10.1007/s12035-013-8559-7 CrossRefPubMedGoogle Scholar
- Moraes CA, Santos G, de Sampaio e Spohr TC, D′Avila JC, Lima FR, Benjamim CF, Bozza FA, Gomes FC (2015) Activated Microglia-Induced Deficits in Excitatory Synapses Through IL-1beta: Implications for Cognitive Impairment in Sepsis. Mol Neurobiol 52:653–663. https://doi.org/10.1007/s12035-014-8868-5 CrossRefPubMedGoogle Scholar
- Morris G, Reiche EMV, Murru A, Carvalho AF, Maes M, Berk M, Puri BK (2018) Multiple immune-inflammatory and oxidative and Nitrosative stress pathways explain the frequent presence of depression in multiple sclerosis. Mol Neurobiol 55:6282–6306. https://doi.org/10.1007/s12035-017-0843-5 CrossRefPubMedPubMedCentralGoogle Scholar
- Movsesyan VAYA, Dabaghyan EA, Stoica BA, Faden AI (2002) Ceramide induces neuronal apoptosis through the caspase-9/caspase-3 pathway. Biochem Biophys Res Commun 299:201–207CrossRefGoogle Scholar
- Nitta A, Murai R, Suzuki N, Ito H, Nomoto H, Katoh G, Furukawa Y, Furukawa S (2002) Diabetic neuropathies in brain are induced by deficiency of BDNF. Neurotoxicol Teratol 24:695–701CrossRefGoogle Scholar
- Nolan Y, Vereker E, Lynch AM, Lynch MA (2003) Evidence that lipopolysaccharide-induced cell death is mediated by accumulation of reactive oxygen species and activation of p38 in rat cortex and hippocampus. Exp Neurol 184:794–804. https://doi.org/10.1016/s0014-4886(03)00301-7 CrossRefPubMedGoogle Scholar
- Notter T, Coughlin JM, Gschwind T, Weber-Stadlbauer U, Wang Y, Kassiou M, Vernon AC, Benke D, Pomper MG, Sawa A, Meyer U (2018) Translational evaluation of translocator protein as a marker of neuroinflammation in schizophrenia. Mol Psychiatry 23:323–334. https://doi.org/10.1038/mp.2016.248 CrossRefPubMedGoogle Scholar
- Ownby RL (2010) Neuroinflammation and cognitive aging. Curr Psychiatry Rep 12:39–45. https://doi.org/10.1007/s11920-009-0082-1 CrossRefPubMedGoogle Scholar
- Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169PubMedGoogle Scholar
- Pardon MC (2015) Lipopolysaccharide hyporesponsiveness: protective or damaging response to the brain? Romanian J Morphol Embryol 56:903–913Google Scholar
- Patil S, Tawari S, Mundhada D, Nadeem S (2015) Protective effect of berberine, an isoquinoline alkaloid ameliorates ethanol-induced oxidative stress and memory dysfunction in rats. Pharmacol Biochem Behav 136:13–20. https://doi.org/10.1016/j.pbb.2015.07.001 CrossRefPubMedGoogle Scholar
- Patrignani C, Lafont DT, Muzio V, Gréco B, Hooft van Huijsduijnen R, Zaratin PF (2010) Characterization of protein tyrosine phosphatase H1 knockout mice in animal models of local and systemic inflammation. J Inflamm (Lond) 7:16. https://doi.org/10.1186/1476-9255-7-16
- Qiao Y, Bai XF, Du YG (2011) Chitosan oligosaccharides protect mice from LPS challenge by attenuation of inflammation and oxidative stress. Int Immunopharmacol 11:121–127. https://doi.org/10.1016/j.intimp.2010.10.016 CrossRefPubMedGoogle Scholar
- Raoufi S, Baluchnejadmojarad T, Roghani M, Ghazanfari T, Khojasteh F, Mansouri M (2015) Antidiabetic potential of salvianolic acid B in multiple low-dose streptozotocin-induced diabetes. Pharm Biol 53:1803–1809. https://doi.org/10.3109/13880209.2015.1008148 CrossRefPubMedGoogle Scholar
- Roghani M, Joghataie MT, Jalali MR, Baluchnejadmojarad T (2006) Time course of changes in passive avoidance and Y-maze performance in male diabetic rats. Iran Biomed J 10:99–104Google Scholar
- Sedaghat R, Taab Y, Kiasalari Z, Afshin-Majd S, Baluchnejadmojarad T, Roghani M (2017) Berberine ameliorates intrahippocampal kainate-induced status epilepticus and consequent epileptogenic process in the rat: underlying mechanisms. Biomed Pharmacother 87:200–208. https://doi.org/10.1016/j.biopha.2016.12.109 CrossRefPubMedGoogle Scholar
- Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Anal Biochem 25:192–205CrossRefGoogle Scholar
- Shagirtha K, Pari L (2011) Hesperetin, a citrus flavonone, protects potentially cadmium induced oxidative testicular dysfunction in rats. Ecotoxicol Environ Saf 74:2105–2111. https://doi.org/10.1016/j.ecoenv.2011.06.002 CrossRefPubMedGoogle Scholar
- Shah SA, Khan M, Jo MH, Jo MG, Amin FU, Kim MO (2017) Melatonin stimulates the SIRT1/Nrf2 signaling pathway counteracting lipopolysaccharide (LPS)-induced oxidative stress to rescue postnatal rat brain. CNS Neurosci Ther 23:33–44. https://doi.org/10.1111/cns.12588 CrossRefPubMedGoogle Scholar
- Shen JD, Ma LG, Hu CY, Pei YY, Jin SL, Fang XY, Li YC (2016) Berberine up-regulates the BDNF expression in hippocampus and attenuates corticosterone-induced depressive-like behavior in mice. Neurosci Lett 614:77–82. https://doi.org/10.1016/j.neulet.2016.01.002 CrossRefPubMedGoogle Scholar
- Silverman HA, Dancho M, Regnier-Golanov A, Nasim M, Ochani M, Olofsson PS, Ahmed M, Miller EJ, Chavan SS, Golanov E, Metz CN, Tracey KJ, Pavlov VA (2014) Brain region-specific alterations in the gene expression of cytokines, immune cell markers and cholinergic system components during peripheral endotoxin-induced inflammation. Mol Med 20:601–611. https://doi.org/10.2119/molmed.2014.00147 CrossRefGoogle Scholar
- Sohanaki H, Baluchnejadmojarad T, Nikbakht F, Roghani M (2016) Pelargonidin improves passive avoidance task performance in a rat amyloid Beta25-35 model of Alzheimer’s disease via estrogen receptor independent pathways. Acta Medica Iranica:245–250Google Scholar
- Stuart SA, Robertson JD, Marrion NV, Robinson ES (2013) Chronic pravastatin but not atorvastatin treatment impairs cognitive function in two rodent models of learning and memory. PLoS One 8:e75467. https://doi.org/10.1371/journal.pone.0075467 CrossRefPubMedPubMedCentralGoogle Scholar
- Tan XS, Ma JY, Feng R, Ma C, Chen WJ, Sun YP, Fu J, Huang M, He CY, Shou JW, He WY, Wang Y, Jiang JD (2013) Tissue distribution of berberine and its metabolites after oral administration in rats. PLoS One 8:e77969. https://doi.org/10.1371/journal.pone.0077969
- Tanila H (2017) The role of BDNF in Alzheimer's disease. Neurobiol Dis 97:114–118. https://doi.org/10.1016/j.nbd.2016.05.008 CrossRefPubMedGoogle Scholar
- Tyagi E, Agrawal R, Nath C, Shukla R (2010) Effect of melatonin on neuroinflammation and acetylcholinesterase activity induced by LPS in rat brain. Eur J Pharmacol 640:206–210. https://doi.org/10.1016/j.ejphar.2010.04.041 CrossRefPubMedGoogle Scholar
- Vasconcelos AR, Yshii LM, Viel TA, Buck HS, Mattson MP, Scavone C, Kawamoto EM (2014) Intermittent fasting attenuates lipopolysaccharide-induced neuroinflammation and memory impairment. J Neuroinflammation 11:85. https://doi.org/10.1186/1742-2094-11-85 CrossRefPubMedPubMedCentralGoogle Scholar
- Wang Y (2013) Attenuation of berberine on lipopolysaccharide-induced inflammatory and apoptosis responses in beta-cells via TLR4-independent JNK/NF-kappaB pathway. Pharm Biol. https://doi.org/10.3109/13880209.2013.840851
- Wang J, Zhang Y (2018) Neuroprotective effect of berberine agonist against impairment of learning and memory skills in severe traumatic brain injury via Sirt1/p38 MAPK expression. Mol Med Rep 17:6881–6886. https://doi.org/10.3892/mmr.2018.8674 CrossRefPubMedGoogle Scholar
- Wang SX, Xiong XM, Song T, Liu LY (2005) Protective effects of cariporide on endothelial dysfunction induced by high glucose. Acta Pharmacol Sin 26:329–333. https://doi.org/10.1111/j.1745-7254.2005.00042.x CrossRefPubMedGoogle Scholar
- Wang HC, Wang BD, Chen MS, Chen H, Sun CF, Shen G, Zhang JM (2018a) Neuroprotective effect of berberine against learning and memory deficits in diffuse axonal injury. Exp Ther Med 15:1129–1135. https://doi.org/10.3892/etm.2017.5496 CrossRefPubMedGoogle Scholar
- Wang J, Li L, Wang Z, Cui Y, Tan X, Yuan T, Liu Q, Liu Z, Liu X (2018b) Supplementation of lycopene attenuates lipopolysaccharide-induced amyloidogenesis and cognitive impairments via mediating neuroinflammation and oxidative stress. J Nutr Biochem 56:16–25. https://doi.org/10.1016/j.jnutbio.2018.01.009 CrossRefPubMedGoogle Scholar
- Wang Y, Wang M, Fan K, Li T, Yan T, Wu B, Bi K, Jia Y (2018c) Protective effects of Alpinae Oxyphyllae Fructus extracts on lipopolysaccharide-induced animal model of Alzheimer's disease. J Ethnopharmacol 217:98–106. https://doi.org/10.1016/j.jep.2018.02.015 CrossRefPubMedGoogle Scholar
- Widmann CN, Heneka MT (2014) Long-term cerebral consequences of sepsis. Lancet Neurol 13:630–636. https://doi.org/10.1016/s1474-4422(14)70017-1 CrossRefPubMedGoogle Scholar
- Yu L, Li Q, Yu B, Yang Y, Jin Z, Duan W, Zhao G, Zhai M, Liu L, Yi D, Chen M, Yu S (2016) Berberine attenuates myocardial ischemia/reperfusion injury by reducing oxidative stress and inflammation response: role of silent information regulator 1. Oxidative Med Cell Longev 2016:1689602. https://doi.org/10.1155/2016/1689602 CrossRefGoogle Scholar
- Zakaria R, Wan Yaacob WM, Othman Z, Long I, Ahmad AH, Al-Rahbi B (2017) Lipopolysaccharide-induced memory impairment in rats: a model of Alzheimer's disease. Physiol Res 66:553–565PubMedGoogle Scholar
- Zarezadeh M, Baluchnejadmojarad T, Kiasalari Z, Afshin-Majd S, Roghani M (2017) Garlic active constituent s-allyl cysteine protects against lipopolysaccharide-induced cognitive deficits in the rat: possible involved mechanisms. Eur J Pharmacol 795:13–21. https://doi.org/10.1016/j.ejphar.2016.11.051 CrossRefPubMedGoogle Scholar
- Zhang J, Yu C, Zhang X, Chen H, Dong J, Lu W, Song Z, Zhou W (2018) Porphyromonas gingivalis lipopolysaccharide induces cognitive dysfunction, mediated by neuronal inflammation via activation of the TLR4 signaling pathway in C57BL/6 mice. J Neuroinflammation 15:37. https://doi.org/10.1186/s12974-017-1052-x CrossRefPubMedPubMedCentralGoogle Scholar
- Zhu B, Wang ZG, Ding J, Liu N, Wang DM, Ding LC, Yang C (2014) Chronic lipopolysaccharide exposure induces cognitive dysfunction without affecting BDNF expression in the rat hippocampus. Exp Ther Med 7:750–754. https://doi.org/10.3892/etm.2014.1479 CrossRefPubMedPubMedCentralGoogle Scholar