Metabolic Brain Disease

, Volume 34, Issue 1, pp 367–372 | Cite as

FOXRED1 silencing in mice: a possible animal model for Leigh syndrome

  • Mohamed SalamaEmail author
  • Sara El-Desouky
  • Aziza Alsayed
  • Mahmoud El-Hussiny
  • Abdelrahman Moustafa
  • Yasmeen Taalab
  • Wael Mohamed
Short Communication


Leigh syndrome (LS) is one of the most puzzling mitochondrial disorders, which is also known as subacute necrotizing encephalopathy. It has an incidence of 1 in 77,000 live births worldwide with poor prognosis. Currently, there is a poor understanding of the underlying pathophysiological mechanisms of the disease without any available effective treatment. Hence, the inevitability for developing suitable animal and cellular models needed for the development of successful new therapeutic modalities. In this short report, we blocked FOXRED1 gene with small interfering RNA (siRNA) using C57bl/6 mice. Results showed neurobehavioral changes in the injected mice along with parallel degeneration in corpus striatum and sparing of the substantia nigra similar to what happen in Leigh syndrome cases. FOXRED1 blockage could serve as a new animal model for Leigh syndrome due to defective CI, which echoes damage to corpus striatum and affection of the central dopaminergic system in this disease. Further preclinical studies are required to validate this model.


FOXRED1 Neurodegenerative diseases Leigh syndrome Gene silencing 



This work was supported by a grant from the Egyptian Science and Technology Development Fund (STDF) through Basic and Applied Research Grants (BARG) program, grant number (13892) [MS].


  1. Andrews B, Carroll J, Ding S, Fearnley IM, Walker JE (2013) Assembly factors for the membrane arm of human complex I. Proc Natl Acad Sci U S A 110(47):18934–18939PubMedPubMedCentralCrossRefGoogle Scholar
  2. Arii J, Tanabe Y (2000) Leigh syndrome: serial MR imaging and clinical follow-up. Am J Neuroradiol 21(8):1502–1509PubMedGoogle Scholar
  3. Ascherio A, Schwarzschild MA (2016) The epidemiology of Parkinson's disease: risk factors and prevention. Lancet Neurol 15(12):1257–1272PubMedCrossRefGoogle Scholar
  4. Blandini F, Cova L, Armentero M, Zennaro E, Levandis G, Bossolasco P, Calzarossa C, Mellone M, Giuseppe B, Deliliers G, Polli E, Nappi G, Silani V (2010) Transplantation of undifferentiated human mesenchymal stem cells protects against 6-hydroxy dopamine neurotoxicity in the rat. Cell Transplant 19(2):203–217PubMedCrossRefGoogle Scholar
  5. Brenner-Lavie H, Klein E, Ben-Shachar D (2009) Mitochondrial complex I as a novel target for intraneuronal DA: modulation of respiration in intact cells. Biochem Pharmacol 78(1):85–95PubMedCrossRefGoogle Scholar
  6. Calvo SE, Tucker EJ, Compton AG, Kirby DM, Crawford G, Burtt NP, Rivas M, Guiducci C, Bruno DL, Goldberger OA, Redman MC, Wiltshire E, Wilson CJ, Altshuler D, Gabriel SB, Daly MJ, Thorburn DR, Mootha VK (2010) High-throughput, pooled sequencing identifies mutations in NUBPL and FOXRED1 in human complex I deficiency. Nat Genet 42(10):851–858PubMedPubMedCentralCrossRefGoogle Scholar
  7. Carlsson T, Winkler C, Lundblad M, Cenci MA, Bjorklund A, Kirik D (2006) Graft placement and uneven pattern of reinnervation in the striatum is important for the development of graft-induced dyskinesias. Neurobiol Dis 21:657–668PubMedCrossRefGoogle Scholar
  8. Chen B, Hui J, Montgomery KS, Gella A, Bolea I, Sanz E, Palmiter RD, Quintana A (2017) Loss of mitochondrial Ndufs4 in striatal medium spiny neurons mediates progressive motor impairment in a mouse model of Leigh syndrome. Front Mol Neurosci 10:265PubMedPubMedCentralCrossRefGoogle Scholar
  9. Choi WS, Kim HW, Tronche F, Palmiter RD, Storm DR, Xia Z (2017) Conditional deletion of Ndufs4 in dopaminergic neurons promotes Parkinson's disease-like non-motor symptoms without loss of dopamine neurons. Sci Rep 7:44989PubMedPubMedCentralCrossRefGoogle Scholar
  10. Devi L, Raghavendran V, Prabhu BM, Avadhani NG, Anandatheerthavarada HK (2008) Mitochondrial import and accumulation of α-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem 283(14):9089–9100PubMedPubMedCentralCrossRefGoogle Scholar
  11. DiMauro S, Schon EA, Carelli V, Hirano M (2013) The clinical maze of mitochondrial neurology. Nat Rev Neurol 9(8):429–444Google Scholar
  12. Fassone E, Duncan AJ, Taanman JW, Pagnamenta AT, Sadowski MI, Holand T et al (2015) FOXRED1, encoding a FAD-dependent oxidoreductase complex-I-specific molecular chaperone, is mutated in infantile-onset mitochondrial encephalopathy. Hum Mol Genet 19(24):4837–4847CrossRefGoogle Scholar
  13. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR et al (2013) Pfam: the protein families database. Nucleic Acids Res 42(D1):D222–D230PubMedPubMedCentralCrossRefGoogle Scholar
  14. Formosa LE, Mimaki M, Frazier AE, McKenzie M, Stait TL, Thorburn DR, Stroud DA, Ryan MT (2015) Characterization of mitochondrial FOXRED1 in the assembly of respiratory chain complex I. Hum Mol Genet 24(10):2952–2965PubMedCrossRefGoogle Scholar
  15. Franklin KBJ, PG (1997) The mouse brain in stereotaxic coordinates, 2nd edn. Academic Press, San Diego, CAGoogle Scholar
  16. Giachin G, Bouverot R, Acajjaoui S, Pantalone S, Soler-Lopez M (2016) Dynamics of human mitochondrial complex I assembly: implications for neurodegenerative diseases. Front Mol Biosci 3:43PubMedPubMedCentralCrossRefGoogle Scholar
  17. Haelterman NA, Yoon WH, Sandoval H, Jaiswal M, Shulman JM, Bellen HJ (2014) A mitocentric view of Parkinson's disease. Annu Rev Neurosci 37:137–159PubMedPubMedCentralCrossRefGoogle Scholar
  18. Kruse SE, Watt WC, Marcinek DJ, Kapur RP, Schenkman KA, Palmiter RD (2008) Mice with mitochondrial complex I deficiency develop a fatal encephalomyopathy. Cell Metab 7:312–320PubMedPubMedCentralCrossRefGoogle Scholar
  19. Lake NJ, Compton AG, Rahman S, Thorburn DR (2016) Leigh syndrome: One disorder, more than 75 monogenic causes. Ann Neurol 79:190–203PubMedCrossRefGoogle Scholar
  20. Lazarou M, Thorburn DR, Ryan MT, McKenzie M (2009) Assembly of mitochondrial complex I and defects in disease. Biochimica et Biophysica Acta (BBA)-Molecular. Cell Res 1793(1):78–88Google Scholar
  21. Lebre AS, Rio M, Faivre d'Arcier L, Vernerey D, Landrieu P, Slama A, Jardel C, Laforet P, Rodriguez D, Dorison N, Galanaud D, Chabrol B, Paquis-Flucklinger V, Grevent D, Edvardson S, Steffann J, Funalot B, Villeneuve N, Valayannopoulos V, de Lonlay P, Desguerre I, Brunelle F, Bonnefont JP, Rotig A, Munnich A, Boddaert N (2011) A common pattern of brain MRI imaging in mitochondrial diseases with complex I deficiency. J Med Genet 48(1):16–23PubMedCrossRefGoogle Scholar
  22. Lemire BD (2015a) A structural model for FOXRED1, an FAD-dependent oxidoreductase necessary for NADH: Ubiquinone oxidoreductase (complex I) assembly. Mitochondrion 22:9–16PubMedCrossRefGoogle Scholar
  23. Lemire BD (2015b) Evolution of FOXRED1, an FAD-dependent oxidoreductase necessary for NADH: ubiquinone oxidoreductase (Complex I) assembly. Biochim Biophys Acta 1847:451–457PubMedCrossRefGoogle Scholar
  24. Lienhart WD, Gudipati V, MacHeroux P (2013) The human flavoproteome. Arch Biochem Biophys 535(2):150–162PubMedPubMedCentralCrossRefGoogle Scholar
  25. Martikainen MH, Kytövuori L, Majamaa K (2013) Juvenile parkinsonism, hypogonadism and Leigh-like MRI changes in a patient with m.4296G>a mutation in mitochondrial DNA. Mitochondrion 13(2):83–86PubMedCrossRefGoogle Scholar
  26. Mimaki M, Wang X, McKenzie M, Thorburn DR, Ryan MT (2012) Understanding mitochondrial complex I assembly in health and disease. Biochim Biophys Acta 1817(6):851–862PubMedCrossRefGoogle Scholar
  27. Miyauchi A, Osaka H, Nagashima M, Kuwajima M, Monden Y, Kohda M et al (2018) Leigh syndrome with spinal cord involvement due to a hemizygous NDUFA1 mutation. Brain Dev 40(6):498–502PubMedCrossRefGoogle Scholar
  28. Nouws J, Nijtmans LG, Smeitink JA, Vogel RO (2011) Assembly factors as a new class of disease genes for mitochondrial complex I deficiency: cause, pathology and treatment options. Brain 135(1):12–22PubMedCrossRefGoogle Scholar
  29. Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, Ong SE, Walford GA, Sugiana C, Boneh A, Chen WK, Hill DE, Vidal M, Evans JG, Thorburn DR, Carr SA, Mootha VK (2008) A mitochondrial protein compendium elucidates complex I disease biology. Cell 134(1):112–123PubMedPubMedCentralCrossRefGoogle Scholar
  30. Quintana A, Kruse SE, Kapur RP, Sanz E, Palmiter RD (2010) Complex I deficiency due to loss of Ndufs4 in the brain results in progressive encephalopathy resembling Leigh syndrome. Proc Natl Acad Sci U S A 107(24):10996–11001PubMedPubMedCentralCrossRefGoogle Scholar
  31. Quintana A, Zanella S, Koch H, Kruse SE, Lee D, Ramirez JM, Palmiter RD (2012) Fatal breathing dysfunction in a mouse model of Leigh syndrome. J Clin Invest 122(7):2359–2368PubMedPubMedCentralCrossRefGoogle Scholar
  32. Ruhoy IS, Saneto RP (2014) The genetics of Leigh syndrome and its implications for clinical practice and risk management. Appl Clin Genet 7:221–234PubMedPubMedCentralGoogle Scholar
  33. Salama M, Arias-Carrio’n O (2011) Natural toxins implicated in the development of Parkinson’s disease. Ther Adv Neurol Disord 4(6):361–373PubMedPubMedCentralCrossRefGoogle Scholar
  34. Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407PubMedPubMedCentralCrossRefGoogle Scholar
  35. Wirtz S, Schuelke M (2011) Region-specific expression of mitochondrial complex I genes during murine brain development. PLoS One 6(4):e18897PubMedPubMedCentralCrossRefGoogle Scholar
  36. Wittig I, Carrozzo R, Santorelli FM, Schägger H (2006) Supercomplexes and subcomplexes of mitochondrial oxidative phosphorylation. Biochim Biophys Acta 1757(9):1066–1072PubMedCrossRefGoogle Scholar
  37. Xu H, Rosler TW, Carlsson T, de Andrade A, Fiala O, Hollerhage M, Oertel WH, Goedert M, Aigner A, Hoglinger GU (2014) Tau silencing by siRNA in the P301S mouse model of tauopathy. Curr Gene Ther 14(5):343–351PubMedCrossRefGoogle Scholar
  38. Zurita Rendón O, Antonicka H, Horvath R, Shoubridge EA (2016) A mutation in the Flavin adenine dinucleotide-dependent oxidoreductase FOXRED1 results in cell-type-specific assembly defects in oxidative phosphorylation complexes I and II. Mol Cell Biol 36(16):2132–2140PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mohamed Salama
    • 1
    • 2
    Email author
  • Sara El-Desouky
    • 1
  • Aziza Alsayed
    • 1
  • Mahmoud El-Hussiny
    • 1
  • Abdelrahman Moustafa
    • 1
  • Yasmeen Taalab
    • 2
  • Wael Mohamed
    • 3
    • 4
  1. 1.Medical Experimental Research Center (MERC), Faculty of MedicineMansoura UniversityMansouraEgypt
  2. 2.Toxicology Department, Faculty of MedicineMansoura UniversityMansouraEgypt
  3. 3.Clinical Pharmacology Department, Faculty of MedicineMenoufia UniversityShebeen El-KomEgypt
  4. 4.Department of Basic Medical Science, Kulliyyah of MedicineInternational Islamic UniversityKuantanMalaysia

Personalised recommendations