Advertisement

Adipocyte proteome and secretome influence inflammatory and hormone pathways in glioma

  • J. Almeida
  • J. Costa
  • P. Coelho
  • V. Cea
  • M. Galesio
  • J. P. Noronha
  • M. S. Diniz
  • C. Prudêncio
  • R. Soares
  • C. Sala
  • Rúben Fernandes
Original Article

Abstract

Gliomas represent the most common primary malignant brain tumors in adults, with an extremely poor prognosis. Among several risk factors, lifestyle was also recently identified as a major risk factor for the development of primary glioma. In the present study, we explore the relationship between obesity and glioma in a cellular model. Thus, we have study the influence of adipocytes secretome on glioma cell line GL261. Using the 3T3-L1 adipocyte cell line, and its conditioned medium (adipokines-enriched medium), we showed that adipocyte-released factors relate with glioma angiogenic, growth, hormones and metabolic behavior by MALDI-TOF-MS and proteomic array analysis. In a first view, STI1, hnRNPs and PGK1 are under expressed on CGl. Similarly, both carbonic anhydrase and aldose reductase are even suppressed in glioma cells that grown under adipokines-enriched environment. Contrariwise, RFC1, KIF5C, ANXA2, N-RAP and RACK1 are overexpressed in GL261 cell the in the presence of the adipokines-enriched medium. We further identified the factors that are released by adipocyte cells, and revealed that several pro-inflammatory and angiogenic factors, such as IL-6, IL-11, LIF, PAI-1, TNF-α, endocan, HGF, VEGF IGF-I, were secreted to the medium into a high extent, whereas TIMP-1 and SerpinE1 were under expressed on CGl. This study discloses an interesting in vitro model for the study of glioma biology under a “obesity” environment, that can be explored for the understanding of cancer cells biology, for the search of biomarkers, prognostic markers and therapeutic approaches.

Keywords

Adipo-proteomics GL261 Glioma Obesity 

Notes

Acknowledgements

Fernandes R. on the behalf of the authors deeply acknowledge Prof. Pedroso Lima, CNC, Coimbra, Portugal by her kindness in providing the GL261 cells. Costa J. and Fernandes R. were supported with an ERASMUS grant. Portuguese Government supported Coelho P. with a PhD grant by FCT. SFRH/BD/80434/2011. Italian Government supported Sala C. with an AIRC grant n. 10807 and PNR-CNR Aging Program 2012-2014. The project was partially supported by FCT (Strategic Project Reference: UID/BIM/04293/2013). Fernandes R. is support by SAICT-POL/24325/2016 and SAICT-POL/24358/2016.

Author’s contributions

Conception: Rúben Fernandes; Research design: Rúben Fernandes and Carlo Sala; Manuscript writing: Joana Almeida and Joana Costa which contributed equally and Pedro Coelho; Research and data analysis: Joana Almeida, Joana Costa, Pedro Coelho, Valentina Cea, Marco Galésio, João Paulo Noronha, Mário Diniz, Cristina Prudêncio, Raquel Soares, Carlo Sala and Rúben Fernandes. All authors have read and approved the final manuscript.

Compliance with ethical standards

Ethical considerations

No human participants, tissues or cells were used, other than commercially available cell lines, that require prior ethical approval to the corresponding ethic committees.

Conflicts of interest

The authors declare that there are no conflicts of interest.

Supplementary material

11011_2018_327_MOESM1_ESM.odt (12 kb)
ESM 1 (ODT 11 kb)

References

  1. Aoki T, Kato S, Fox JC, Okamoto K, Sakata K, Morimatsu M, Shigemori M (2002) Inhibition of autocrine fibroblast growth factor signaling by the adenovirus-mediated expression of an antisense transgene or a dominant negative receptor in human glioma cells in vitro. Int J Oncol 21:629–636PubMedGoogle Scholar
  2. Bainbridge MN, Armstrong GN, Gramatges MM et al (2014) Germline mutations in Shelterin complex genes are associated with familial glioma. JNCI J Natl Cancer Inst 107:dju384–dju384.  https://doi.org/10.1093/jnci/dju384 CrossRefPubMedGoogle Scholar
  3. Benson VS, Pirie K, Green J et al (2008) Lifestyle factors and primary glioma and meningioma tumours in the million women study cohort. Br J Cancer 99:185–190.  https://doi.org/10.1038/sj.bjc.6604445 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Calle EE, Thun MJ (2004) Obesity and cancer. Oncogene 23:6365–6378.  https://doi.org/10.1038/sj.onc.1207751 CrossRefPubMedGoogle Scholar
  5. Calle EE, Thun MJ, Petrelli JM, Rodriguez C, Heath CW Jr (1999) Body-mass index and mortality in a prospective cohort of U.S. adults. N Engl J Med 341:1097–1105.  https://doi.org/10.1056/NEJM199910073411501 CrossRefPubMedGoogle Scholar
  6. Candolfi M, Curtin JF, Nichols WS, Muhammad AKMG, King GD, Pluhar GE, McNiel EA, Ohlfest JR, Freese AB, Moore PF, Lerner J, Lowenstein PR, Castro MG (2007) Intracranial glioblastoma models in preclinical neuro-oncology: neuropathological characterization and tumor progression. J Neuro-Oncol 85:133–148.  https://doi.org/10.1007/s11060-007-9400-9 CrossRefGoogle Scholar
  7. Cao Y (2013) Angiogenesis and vascular functions in modulation of obesity, adipose metabolism, and insulin sensitivity. Cell Metab 18:478–489.  https://doi.org/10.1016/j.cmet.2013.08.008 CrossRefPubMedGoogle Scholar
  8. Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9:653–660.  https://doi.org/10.1038/nm0603-653 CrossRefPubMedGoogle Scholar
  9. Chen J, McKay RMM, Parada LFF (2012) Malignant glioma: lessons from genomics, mouse models, and stem cells. Cell 149:36–47.  https://doi.org/10.1016/j.cell.2012.03.009 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Coelho P, Almeida J, Prudêncio C, Fernandes R, Soares R (2015) Effect of adipocyte Secretome in melanoma progression and Vasculogenic mimicry. J Cell Biochem 117:1697–1706.  https://doi.org/10.1002/jcb.25463 CrossRefGoogle Scholar
  11. Corvera S, Gealekman O (2014) Adipose tissue angiogenesis: impact on obesity and type-2 diabetes. Biochim Biophys Acta 1842:463–472.  https://doi.org/10.1016/j.bbadis.2013.06.003 CrossRefPubMedGoogle Scholar
  12. Costa C, Soares R, Schmitt F (2004) Angiogenesis: now and then. APMIS 112:402–412.  https://doi.org/10.1111/j.1600-0463.2004.apm11207-0802.x CrossRefPubMedGoogle Scholar
  13. Costa C, Incio J, Soares R (2007) Angiogenesis and chronic inflammation: cause or consequence? Angiogenesis 10:149–166.  https://doi.org/10.1007/s10456-007-9074-0 CrossRefPubMedGoogle Scholar
  14. Delehedde M, Devenyns L, Maurage C-A, Vivès RR (2013) Endocan in cancers: a lesson from a circulating dermatan sulfate proteoglycan. Int J Cell Biol 2013:705027.  https://doi.org/10.1155/2013/705027 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Disney-Hogg L, Sud A, Law PJ, Cornish AJ, Kinnersley B, Ostrom QT, Labreche K, Eckel-Passow JE, Armstrong GN, Claus EB, Il’yasova D, Schildkraut J, Barnholtz-Sloan JS, Olson SH, Bernstein JL, Lai RK, Swerdlow AJ, Simon M, Hoffmann P, Nöthen MM, Jöckel KH, Chanock S, Rajaraman P, Johansen C, Jenkins RB, Melin BS, Wrensch MR, Sanson M, Bondy ML, Houlston RS (2018) Influence of obesity-related risk factors in the aetiology of glioma. Br J Cancer 118:1020–1027.  https://doi.org/10.1038/s41416-018-0009-x CrossRefPubMedPubMedCentralGoogle Scholar
  16. Donohoe CL, Lysaght J, O ‘sullivan J, Reynolds J V (2016) Emerging concepts linking obesity with the hallmarks of cancer.  https://doi.org/10.1016/j.tem.2016.08.004 CrossRefGoogle Scholar
  17. Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, Haw R, Jassal B, Korninger F, May B, Milacic M, Roca CD, Rothfels K, Sevilla C, Shamovsky V, Shorser S, Varusai T, Viteri G, Weiser J, Wu G, Stein L, Hermjakob H, D’Eustachio P (2018) The Reactome pathway knowledgebase. Nucleic Acids Res 46:D649–D655.  https://doi.org/10.1093/nar/gkx1132 CrossRefPubMedGoogle Scholar
  18. Gundry RL, White MY, Murray CI et al (2009) Preparation of proteins and peptides for mass spectrometry analysis in a bottom-up proteomics workflow. Curr Protoc Mol Biol Chapter 10:10.25.1–10.25.23.  https://doi.org/10.1002/0471142727.mb1025s88 CrossRefGoogle Scholar
  19. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674.  https://doi.org/10.1016/j.cell.2011.02.013 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hossain A, Gumin J, Gao F, Figueroa J, Shinojima N, Takezaki T, Priebe W, Villarreal D, Kang SG, Joyce C, Sulman E, Wang Q, Marini FC, Andreeff M, Colman H, Lang FF (2015) Mesenchymal stem cells isolated from human gliomas increase proliferation and maintain stemness of glioma stem cells through the IL-6/gp130/STAT3 pathway. Stem Cells 33:2400–2415.  https://doi.org/10.1002/stem.2053 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Huse JT, Holland E, DeAngelis LM (2013) Glioblastoma: molecular analysis and clinical implications. Annu Rev Med 64:59–70.  https://doi.org/10.1146/annurev-med-100711-143028 CrossRefPubMedGoogle Scholar
  22. Khandekar MJ, Cohen P, Spiegelman BM (2011) Molecular mechanisms of cancer development in obesity. Nat Rev Cancer 11:886–895.  https://doi.org/10.1038/nrc3174 CrossRefPubMedGoogle Scholar
  23. Kiliaan AJ, Arnoldussen IA, Gustafson DR (2014) Adipokines: a link between obesity and dementia? IArnoldussen@anatumcnnl. Lancet Neurol 13:913–923.  https://doi.org/10.1016/S1474-4422(14)70085-7 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Lawrence JE, Cook NJ, Rovin RA, Winn RJ (2012) Leptin Promotes Glioblastoma. Neurol Res Int 2012:1–6.  https://doi.org/10.1155/2012/870807 CrossRefGoogle Scholar
  25. Lemoine AY, Ledoux S, Larger E (2013) Adipose tissue angiogenesis in obesity. Thromb Haemost 110:661–669.  https://doi.org/10.1160/TH13-01-0073 CrossRefPubMedGoogle Scholar
  26. Lijnen HR (2008) Angiogenesis and obesity. Cardiovasc Res 78:286–293.  https://doi.org/10.1093/cvr/cvm007 CrossRefPubMedGoogle Scholar
  27. Lokman NA, Ween MP, Oehler MK, Ricciardelli C (2011) The role of annexin A2 in tumorigenesis and cancer progression. Cancer Microenviron 4:199–208.  https://doi.org/10.1007/s12307-011-0064-9 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Luisa A, Stefano D, Enciso-mora V, et al (2012) Association between glioma susceptibility molecular etiologies. 1–6Google Scholar
  29. Matano F, Yoshida D, Ishii Y, Tahara S, Teramoto A, Morita A (2014) Endocan, a new invasion and angiogenesis marker of pituitary adenomas. J Neuro-Oncol 117:485–491.  https://doi.org/10.1007/s11060-014-1377-6 CrossRefGoogle Scholar
  30. Maurage C-A, Adam E, Minéo J-F, Sarrazin S, Debunne M, Siminski RM, Baroncini M, Lassalle P, Blond S, Delehedde M (2009) Endocan expression and localization in human glioblastomas. J Neuropathol Exp Neurol 68:633–641.  https://doi.org/10.1097/NEN.0b013e3181a52a7f CrossRefPubMedGoogle Scholar
  31. Mendonça F, Soares R (2015) Obesity and cancer phenotype: is angiogenesis a missed link? Life Sci 139:16–23.  https://doi.org/10.1016/j.lfs.2015.08.009 CrossRefPubMedGoogle Scholar
  32. Moore SC, Rajaraman P, Dubrow R, Darefsky AS, Koebnick C, Hollenbeck A, Schatzkin A, Leitzmann MF (2009) Height, body mass index, and physical activity in relation to glioma risk. Cancer Res 69:8349–8355.  https://doi.org/10.1158/0008-5472.CAN-09-1669 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Niclou SP, Fack F, Rajcevic U (2010) Glioma proteomics: status and perspectives. J Proteome 73:1823–1838.  https://doi.org/10.1016/j.jprot.2010.03.007 CrossRefGoogle Scholar
  34. Ostrom QT, Bauchet L, Davis FG, Deltour I, Fisher JL, Langer CE, Pekmezci M, Schwartzbaum JA, Turner MC, Walsh KM, Wrensch MR, Barnholtz-Sloan JS (2014) The epidemiology of glioma in adults: a “state of the science” review. Neuro-Oncology 16:896–913.  https://doi.org/10.1093/neuonc/nou087 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Parkin DM, Bray F, Ferlay J, Pisani P (2002) Global cancer statistics. CA Cancer J Clin 55:74–108CrossRefGoogle Scholar
  36. Patrick W, Kesari S (2008) Malignant Gliomas in Adults. N Engl J Med 359:492–507.  https://doi.org/10.1056/NEJMc086380 CrossRefGoogle Scholar
  37. Pirraco A, Coelho P, Rocha A, Costa R, Vasques L, Soares R (2010) Imatinib targets PDGF signaling in melanoma and host smooth muscle neighboring cells. J Cell Biochem 111:433–441.  https://doi.org/10.1002/jcb.22725 CrossRefPubMedGoogle Scholar
  38. Pi-Sunyer FX (2002) The obesity epidemic: pathophysiology and consequences of obesity. Obes Res 10(Suppl 2):97S–104S.  https://doi.org/10.1038/oby.2002.202 CrossRefPubMedGoogle Scholar
  39. Prieto-Hontoria PL, Pérez-Matute P, Fernández-Galilea M, Bustos M, Martínez JA, Moreno-Aliaga MJ (2011) Role of obesity-associated dysfunctional adipose tissue in cancer: a molecular nutrition approach. Biochim Biophys Acta 1807:664–678.  https://doi.org/10.1016/j.bbabio.2010.11.004 CrossRefPubMedGoogle Scholar
  40. Roberts DL, Dive C, Renehan AG (2010) Biological mechanisms linking obesity and cancer risk: new perspectives. Annu Rev Med 61:301–316.  https://doi.org/10.1146/annurev.med.080708.082713 CrossRefPubMedGoogle Scholar
  41. Rosenfeld J, Capdevielle J, Guillemot JC, Ferrara P (1992) In-gel digestion of proteins for internal sequence analysis after one- or two-dimensional gel electrophoresis. Anal Biochem 203:173–179.  https://doi.org/10.1016/0003-2697(92)90061-B CrossRefPubMedGoogle Scholar
  42. Shevchenko A, Tomas H, Havlis J et al (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860.  https://doi.org/10.1038/nprot.2006.468 CrossRefGoogle Scholar
  43. Siegel EM, Nabors LB, Thompson RC, Olson JJ, Browning JE, Madden MH, Han G, Egan KM (2013) Prediagnostic body weight and survival in high grade glioma. J Neuro-Oncol 114:79–84.  https://doi.org/10.1007/s11060-013-1150-2 CrossRefGoogle Scholar
  44. Sielska M, Przanowski P, Wylot B, Gabrusiewicz K, Maleszewska M, Kijewska M, Zawadzka M, Kucharska J, Vinnakota K, Kettenmann H, Kotulska K, Grajkowska W, Kaminska B (2013) Distinct roles of CSF family cytokines in macrophage infiltration and activation in glioma progression and injury response. J Pathol 230:310–321.  https://doi.org/10.1002/path.4192 CrossRefPubMedGoogle Scholar
  45. Szatmari T, Lumniczky K, Desaknai S, Trajcevski S, Hidvegi EJ, Hamada H, Safrany G (2006) Detailed characterization of the mouse glioma 261 tumor model for experimental glioblastoma therapy. Cancer Sci 97:546–553.  https://doi.org/10.1111/j.1349-7006.2006.00208.x CrossRefPubMedGoogle Scholar
  46. van Kruijsdijk RCM, van der Wall E, Visseren FLJ (2009) Obesity and Cancer: the role of dysfunctional adipose tissue. Cancer Epidemiol Biomark Prev 18:2569–2578.  https://doi.org/10.1158/1055-9965.EPI-09-0372 CrossRefGoogle Scholar
  47. Verpelli C, Bertani G, Cea V, Patti M, Bikfalvi A, Bello L, Sala C (2010) Anti-angiogenic therapy induces integrin-linked kinase 1 up-regulation in a mouse model of glioblastoma. PLoS One 5:1–12.  https://doi.org/10.1371/journal.pone.0013710 CrossRefGoogle Scholar
  48. Wiedmann MKH, Brunborg C, Di Ieva A et al (2017) Overweight, obesity and height as risk factors for meningioma, glioma, pituitary adenoma and nerve sheath tumor: a large population-based prospective cohort study. Acta Oncol (Madr) 56:1302–1309.  https://doi.org/10.1080/0284186X.2017.1330554 CrossRefGoogle Scholar
  49. Wolin KY, Carson K, Colditz G a (2010) Obesity and Cancer. Oncologist 15:556–565.  https://doi.org/10.1634/theoncologist.2009-0285 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Xu M, Yao Y, Hua W, Wu Z, Zhong P, Mao Y, Zhou L, Luo F, Chu Y (2014) Mouse glioma immunotherapy mediated by A2B5+ GL261 cell lysate-pulsed dendritic cells. J Neuro-Oncol 116:497–504.  https://doi.org/10.1007/s11060-013-1334-9 CrossRefGoogle Scholar
  51. Yi L, Zhou C, Wang B et al (2013) Implantation of GL261 neurospheres into C57/BL6 mice: a more reliable syngeneic graft model for research on glioma-initiating cells. Int J Oncol 43:477–484.  https://doi.org/10.3892/ijo.2013.1962 CrossRefPubMedGoogle Scholar
  52. Yin J, Gao Z, He Q, Zhou D, Guo ZK, Ye J (2008) Role of hypoxia in obesity-induced disorders of glucose and lipid metabolism in adipose tissue. AJP Endocrinol Metab 296:E333–E342.  https://doi.org/10.1152/ajpendo.90760.2008 CrossRefGoogle Scholar
  53. Young N, Van Brocklyn JR (2007) Roles of sphingosine-1-phosphate (S1P) receptors in malignant behavior of glioma cells. Differential effects of S1P2 on cell migration and invasiveness. Exp Cell Res 313:1615–1627.  https://doi.org/10.1016/j.yexcr.2007.02.009 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Zhai H, Acharya S, Gravanis I, Mehmood S, Seidman RJ, Shroyer KR, Hajjar KA, Tsirka SE (2011) Annexin A2 promotes glioma cell invasion and tumor progression. J Neurosci 31:14346–14360.  https://doi.org/10.1523/JNEUROSCI.3299-11.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Zhang X, Liu S, Guo C, Zong J, Sun MZ (2012) The association of annexin A2 and cancers. Clin Transl Oncol 14:634–640.  https://doi.org/10.1007/s12094-012-0855-6 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of HealthPolytechnic of PortoPortoPortugal
  2. 2.Department of Functional Biology and Health SciencesUniversity of VigoVigoSpain
  3. 3.Unit of Metabolism, Nutrition and Endocrinology, i3SUniversity of PortoPortoPortugal
  4. 4.CNR Neuroscience Institute Milan, and Department of Biotechnology and Translational MedicineUniversity of MilanMilanItaly
  5. 5.REQUIMTE, Department of Chemistry, Faculty of Sciences and Technology, Centre for Fine Chemistry and BiotechnologyNOVA UniversityFort LauderdaleUSA
  6. 6.Department of Biomedicine, Unit of Biochemistry, Faculty of MedicineUniversity of PortoPortoPortugal

Personalised recommendations